Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Distance geometry
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Embedding arbitrarily many points === The <math>n+3</math> case turns out to be sufficient in general. In general, given a semimetric space <math>(R, d)</math>, it can be isometrically embedded in <math>\mathbb{R}^n</math> if and only if there exists <math>P_0, \ldots, P_n\in R</math>, such that, for all <math>k = 1, \ldots, n</math>, <math>(-1)^{k+1} \operatorname{CM}(P_0, \ldots, P_k) \ge 0</math>, and for any <math>P_{n+1}, P_{n+2} \in R</math>, #<math>\operatorname{CM}(P_0, \ldots, P_n, P_{n+1}) = 0;</math> #<math>\operatorname{CM}(P_0, \ldots, P_n, P_{n+2}) = 0;</math> #<math>\operatorname{CM}(P_0, \ldots, P_n, P_{n+1}, P_{n+2}) = 0.</math> And such embedding is unique up to isometry in <math>\mathbb{R}^n</math>. Further, if <math>\operatorname{CM}(P_0, \ldots, P_n) \neq 0</math>, then it cannot be isometrically embedded in any <math>\mathbb{R}^m, m < n</math>. And such embedding is unique up to unique isometry in <math>\mathbb{R}^n</math>. Thus, Cayley–Menger determinants give a concrete way to calculate whether a semimetric space can be embedded in <math>\mathbb{R}^n</math>, for some finite <math>n</math>, and if so, what is the minimal <math>n</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)