Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Euclidean algorithm
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Matrix method === The integers {{math|''s''}} and {{math|''t''}} can also be found using an equivalent [[matrix (mathematics)|matrix]] method.<ref name="Koshy_2002">{{cite book | last = Koshy | first = T. | year = 2002 | title = Elementary Number Theory with Applications | publisher = Harcourt/Academic Press | location = Burlington, MA | isbn = 0-12-421171-2 | pages = 167β169}}</ref> The sequence of equations of Euclid's algorithm : <math> \begin{align} a & = q_0 b + r_0 \\ b & = q_1 r_0 + r_1 \\ & \,\,\,\vdots \\ r_{N-2} & = q_N r_{N-1} + 0 \end{align} </math> can be written as a product of {{math|2Γ2}} quotient matrices multiplying a two-dimensional remainder vector <!-- :<math alt="A series of equations consisting of two-dimensional vectors multiplied by an ever-increasing number of 2Γ2 matrices. The vector a b equals the matrix q sub zero 1 1 0 times the vector b r sub zero. It also equals the matrix q sub zero 1 1 0 times the matrix q sub one 1 1 0 times the vector r sub zero r sub one. Continuing to the last step N of the algorithm, it equals the product of all 2Γ2 matrices of the form q sub i 1 1 0 times the vector r sub N minus one r sub N. The index i ranges from 0 to N and the last remainder r sub N is zero."> --> : <math> \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} q_0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} b \\ r_0 \end{pmatrix} = \begin{pmatrix} q_0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} q_1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} r_0 \\ r_1 \end{pmatrix} = \cdots = \prod_{i=0}^N \begin{pmatrix} q_i & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} r_{N-1} \\ 0 \end{pmatrix} \,. </math> Let {{math|'''M'''}} represent the product of all the quotient matrices <!--:<math alt="The 2Γ2 matrix M has four components, m sub 1 1, m sub 1 2, m sub 2 1, and m sub 2 2. It is defined as the product of all 2Γ2 matrices of the form q sub i 1 1 0, where the index i ranges from 0 to N."> --> : <math> \mathbf{M} = \begin{pmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{pmatrix} = \prod_{i=0}^N \begin{pmatrix} q_i & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} q_0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} q_1 & 1 \\ 1 & 0 \end{pmatrix} \cdots \begin{pmatrix} q_{N} & 1 \\ 1 & 0 \end{pmatrix} \,. </math> This simplifies the Euclidean algorithm to the form <!-- alt="The two-dimensional vector a b equals the matrix M times the final vector, r sub N minus one zero. The final non-zero remainder is the greatest common divisor g. Therefore, the vector a b equals the matrix M times the vector g zero."> --> : <math> \begin{pmatrix} a \\ b \end{pmatrix} = \mathbf{M} \begin{pmatrix} r_{N-1} \\ 0 \end{pmatrix} = \mathbf{M} \begin{pmatrix} g \\ 0 \end{pmatrix} \,. </math> To express {{math|''g''}} as a linear sum of {{math|''a''}} and {{math|''b''}}, both sides of this equation can be multiplied by the [[invertible matrix|inverse]] of the matrix {{math|'''M'''}}.<ref name="Koshy_2002" /><ref name="Bach_1996">{{cite book | last1 = Bach | first1 = E. | author1-link = Eric Bach | last2= Shallit | first2 = J. | author2-link = Jeffrey Shallit | year = 1996 | title = Algorithmic number theory | publisher = MIT Press | location = Cambridge, MA | isbn = 0-262-02405-5 | pages = 70β73}}</ref> The [[determinant]] of {{math|'''M'''}} equals {{math|(β1)<sup>''N''+1</sup>}}, since it equals the product of the determinants of the quotient matrices, each of which is negative one. Since the determinant of {{math|'''M'''}} is never zero, the vector of the final remainders can be solved using the inverse of {{math|'''M'''}} <!-- :<math alt="The two-dimensional vector g 0 equals the inverse of matrix M times the vector a b. This equals minus one to the Nth plus one power, times the matrix with components m sub 2 2, minus m sub 1 2, minus m sub 2 1, and m sub 1 1, times the vector a b.">--> : <math> \begin{pmatrix} g \\ 0 \end{pmatrix} = \mathbf{M}^{-1} \begin{pmatrix} a \\ b \end{pmatrix} = (-1)^{N+1} \begin{pmatrix} m_{22} & -m_{12} \\ -m_{21} & m_{11} \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} \,. </math> Since the top equation gives : {{math|1=''g'' = (β1)<sup>''N''+1</sup> ( ''m''<sub>22</sub> ''a'' β ''m''<sub>12</sub> ''b'')}}, the two integers of BΓ©zout's identity are {{math|1=''s'' = (β1)<sup>''N''+1</sup>''m''<sub>22</sub>}} and {{math|1=''t'' = (β1)<sup>''N''</sup>''m''<sub>12</sub>}}. The matrix method is as efficient as the equivalent recursion, with two multiplications and two additions per step of the Euclidean algorithm.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)