Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Euler equations (fluid dynamics)
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Conservation form=== {{See also|Conservation equation|}} The Euler equations in the Froude limit are equivalent to a single conservation equation with conserved quantity and associated flux respectively: <math display="block">\mathbf y = \begin{pmatrix} \rho \\ \mathbf j \\ E^t \end{pmatrix}; \qquad {\mathbf F} = \begin{pmatrix} \mathbf j \\ \frac 1 \rho \mathbf j \otimes \mathbf j + p \mathbf I \\ \left(E^t + p\right) \frac{1}{\rho}\mathbf{j} \end{pmatrix}, </math> where: * <math>\mathbf j = \rho \mathbf u</math> is the [[momentum]] density, a conservation variable. * <math display="inline">E^t = \rho e + \frac{1}{2} \rho u^2</math> is the [[total energy]] density (total energy per unit volume). Here <math>\mathbf y</math> has length N + 2 and <math>\mathbf F</math> has size N(N + 2).{{efn|In 3D for example y has length 5, I has size 3Γ3 and F has size 3Γ5, so the explicit forms are: <math display="block"> {\mathbf y} = \begin{pmatrix} j_1 \\ j_2 \\ j_3 \end{pmatrix}; \quad {\mathbf F} = \begin{pmatrix} j_1 & j_2 & j_3 \\ \frac{j_1^2}{\rho} + p & \frac{j_1j_2}{\rho} & \frac{j_1j_3}{\rho} \\ \frac{j_1j_2}{\rho} & \frac{j_2^2}{\rho} + p & \frac{j_2j_3}{\rho} \\ \frac{j_3j_1}{\rho} & \frac{j_3j_2}{\rho} & \frac{j_3^2}{\rho} + p \\ \left(E^t + p\right) \frac{j_1}{\rho} & \left(E^t + p\right) \frac{j_2}{\rho} & \left(E^t + p\right) \frac{j_3}{\rho} \end{pmatrix}. </math> }} In general (not only in the Froude limit) Euler equations are expressible as: {{Equation box 1 |indent=: |title='''Euler equation(s)'''<br/>(''original conservation or Eulerian form'') |equation=<math>\frac{\partial}{\partial t}\begin{pmatrix} \rho \\ \mathbf{j} \\ E^t \end{pmatrix} + \nabla \cdot \begin{pmatrix} \mathbf{j} \\ \frac{1}{\rho}\mathbf{j} \otimes \mathbf{j} + p \mathbf{I} \\ \left(E^t + p\right) \frac{1}{\rho}\mathbf{j} \end{pmatrix} = \begin{pmatrix} 0 \\ \mathbf f \\ \frac{1}{\rho}\mathbf{j} \cdot \mathbf{f} \end{pmatrix} </math> |cellpadding |border |border colour = #FF0000 |background colour = #ECFCF4 }} where <math>\mathbf f = \rho \mathbf g</math> is the [[force density]], a conservation variable. We remark that also the Euler equation even when conservative (no external field, Froude limit) have '''no [[Riemann invariant]]s''' in general.{{sfn|Chorin|Marsden|2013|p=118|loc=par. 3.2 Shocks}} Some further assumptions are required However, we already mentioned that for a thermodynamic fluid the equation for the total energy density is equivalent to the conservation equation: <math display="block">{\partial \over \partial t} (\rho s) + \nabla \cdot (\rho s \mathbf u) = 0.</math> Then the conservation equations in the case of a thermodynamic fluid are more simply expressed as: {{Equation box 1 |indent=: |title='''Euler equation(s)'''<br/>(''conservation form, for thermodynamic fluids'') |equation=<math> \frac{\partial}{\partial t}\begin{pmatrix}\rho \\ \mathbf{j} \\S \end{pmatrix} + \nabla \cdot \begin{pmatrix}\mathbf{j} \\ \frac{1}{\rho}\mathbf{j} \otimes \mathbf{j} + p\mathbf{I} \\ S\frac{\mathbf{j}}{\rho}\end{pmatrix} = \begin{pmatrix}0 \\ \mathbf{f} \\ 0 \end{pmatrix} </math> |cellpadding |border |border colour = #FFFF00 |background colour = #ECFCF4 }} where <math>S = \rho s</math> is the entropy density, a thermodynamic conservation variable. Another possible form for the energy equation, being particularly useful for [[isobaric process|isobarics]], is: <math display="block"> \frac{\partial H^t}{\partial t} + \nabla \cdot \left(H^t \mathbf u\right) = \mathbf u \cdot \mathbf f - \frac{\partial p}{\partial t}, </math> where <math display="inline">H^t = E^t + p = \rho e + p + \frac{1}{2} \rho u^2</math> is the total [[enthalpy]] density.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)