Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Exponential distribution
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Joint moments of i.i.d. exponential order statistics=== Let <math> X_1, \dotsc, X_n </math> be <math> n </math> [[independent and identically distributed]] exponential random variables with rate parameter ''Ξ»''. Let <math> X_{(1)}, \dotsc, X_{(n)} </math> denote the corresponding [[order statistic]]s. For <math> i < j </math> , the joint moment <math> \operatorname E\left[X_{(i)} X_{(j)}\right] </math> of the order statistics <math> X_{(i)} </math> and <math> X_{(j)} </math> is given by <math display="block">\begin{align} \operatorname E\left[X_{(i)} X_{(j)}\right] &= \sum_{k=0}^{j-1}\frac{1}{(n - k)\lambda} \operatorname E\left[X_{(i)}\right] + \operatorname E\left[X_{(i)}^2\right] \\ &= \sum_{k=0}^{j-1}\frac{1}{(n - k)\lambda}\sum_{k=0}^{i-1}\frac{1}{(n - k)\lambda} + \sum_{k=0}^{i-1}\frac{1}{((n - k)\lambda)^2} + \left(\sum_{k=0}^{i-1}\frac{1}{(n - k)\lambda}\right)^2. \end{align}</math> This can be seen by invoking the [[law of total expectation]] and the memoryless property: <math display="block">\begin{align} \operatorname E\left[X_{(i)} X_{(j)}\right] &= \int_0^\infty \operatorname E\left[X_{(i)} X_{(j)} \mid X_{(i)}=x\right] f_{X_{(i)}}(x) \, dx \\ &= \int_{x=0}^\infty x \operatorname E\left[X_{(j)} \mid X_{(j)} \geq x\right] f_{X_{(i)}}(x) \, dx &&\left(\textrm{since}~X_{(i)} = x \implies X_{(j)} \geq x\right) \\ &= \int_{x=0}^\infty x \left[ \operatorname E\left[X_{(j)}\right] + x \right] f_{X_{(i)}}(x) \, dx &&\left(\text{by the memoryless property}\right) \\ &= \sum_{k=0}^{j-1}\frac{1}{(n - k)\lambda} \operatorname E\left[X_{(i)}\right] + \operatorname E\left[X_{(i)}^2\right]. \end{align}</math> The first equation follows from the [[law of total expectation]]. The second equation exploits the fact that once we condition on <math> X_{(i)} = x </math>, it must follow that <math> X_{(j)} \geq x </math>. The third equation relies on the memoryless property to replace <math>\operatorname E\left[ X_{(j)} \mid X_{(j)} \geq x\right]</math> with <math>\operatorname E\left[X_{(j)}\right] + x</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)