Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Extinction event
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Flood basalt events==== [[File:Extent of Siberian traps german.png|thumb|right|240px|The scientific consensus is that the main cause of the End-Permian extinction event was the large amount of [[carbon dioxide]] emitted by the volcanic eruptions that created the [[Siberian Traps]], which elevated global temperatures.]] The formation of [[large igneous province]]s by flood basalt events could have: * produced dust and [[particulates|particulate]] aerosols, which inhibited photosynthesis and thus caused [[food chain]]s to collapse both on land and at sea<ref>{{cite magazine | vauthors = Courtillot VE |year=1990 |title=A volcanic eruption |magazine=[[Scientific American]] |volume=263 |issue=4 |pages=85–93 |pmid=11536474 |jstor=24997065 |doi=10.1038/scientificamerican1090-85 |bibcode=1990SciAm.263d..85C |url=https://www.scientificamerican.com/article/a-volcanic-eruption/ }}</ref> * emitted sulfur oxides that were precipitated as [[acid rain]] and poisoned many organisms, contributing further to the collapse of food chains * emitted [[carbon dioxide]] and thus possibly causing [[greenhouse effect|sustained global warming]] once the dust and particulate aerosols dissipated. Flood basalt events occur as pulses of activity punctuated by dormant periods. As a result, they are likely to cause the climate to oscillate between cooling and warming, but with an overall trend towards warming as the carbon dioxide they emit can stay in the atmosphere for hundreds of years. Flood basalt events have been implicated as the cause of many major extinction events.<ref>{{cite journal |last1=Rampino |first1=Michael R. |date=13 April 2010 |title=Mass extinctions of life and catastrophic flood basalt volcanism |journal= Proceedings of the National Academy of Sciences|volume=107 |issue=15 |pages=6555–6556 |doi=10.1073/pnas.1002478107 |pmid=20360556 |pmc=2872464 |bibcode=2010PNAS..107.6555R |doi-access=free }}</ref><ref>{{cite journal |last1=Bryan |first1=Scott E. |last2=Peate |first2=Ingrid Ukstins |last3=Peate |first3=David W. |last4=Self |first4=Stephen |last5=Jerram |first5=Dougal A. |last6=Mawby |first6=Michael R. |last7=Marsh |first7=J. S. (Goonie) |last8=Miller |first8=Jodie A. |date=October 2010 |title=The largest volcanic eruptions on Earth |url=https://www.sciencedirect.com/science/article/abs/pii/S0012825210000814 |journal=[[Earth-Science Reviews]] |volume=102 |issue=3–4 |pages=207–229 |doi=10.1016/j.earscirev.2010.07.001 |bibcode=2010ESRv..102..207B |access-date=11 January 2023}}</ref> It is speculated that massive volcanism caused or contributed to the [[Kellwasser event|Kellwasser Event]],<ref name=":1">{{cite journal |title=New <sup>40</sup>Ar/<sup>39</sup>Ar and K–Ar ages of the Viluy traps (Eastern Siberia): Further evidence for a relationship with the Frasnian–Famennian mass extinction |author=Ricci, J. |display-authors=etal |year=2013 |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |volume=386 |pages=531–540 |doi=10.1016/j.palaeo.2013.06.020|bibcode=2013PPP...386..531R }}</ref><ref name=B2014>{{cite journal |last1=Bond |first1=D. P. G. |last2=Wignall |first2=P. B. |year=2014 |title=Large igneous provinces and mass extinctions: An update |journal=GSA Special Papers |volume=505 |pages=29–55 |url=http://specialpapers.gsapubs.org/content/505/29.abstract |doi=10.1130/2014.2505(02) |isbn=9780813725055 |access-date=23 December 2022}}</ref><ref>{{cite journal |last1=Kaiho |first1=Kunio |last2=Miura |first2=Mami |last3=Tezuka |first3=Mio |last4=Hayashi |first4=Naohiro |last5=Jones |first5=David S. |last6=Oikawa |first6=Kazuma |last7=Casier |first7=Jean-Georges |last8=Fujibayashi |first8=Megumu |last9=Chen |first9=Zhong-Qiang |date=April 2021 |title=Coronene, mercury, and biomarker data support a link between extinction magnitude and volcanic intensity in the Late Devonian |url=https://www.sciencedirect.com/science/article/abs/pii/S0921818121000370 |journal=[[Global and Planetary Change]] |volume=199 |page=103452 |doi=10.1016/j.gloplacha.2021.103452 |bibcode=2021GPC...19903452K |s2cid=234364043 |access-date=11 January 2023|url-access=subscription }}</ref> the [[Capitanian mass extinction event|End-Guadalupian Extinction Event]],<ref name="JerramEtAl2016PPP">{{cite journal |last1=Jerram |first1=Dougal A. |last2=Widdowson |first2=Mike |last3=Wignall |first3=Paul B. |last4=Sun |first4=Yadong |last5=Lai |first5=Xulong |last6=Bond |first6=David P. G. |last7=Torsvik |first7=Trond H. |date=1 January 2016 |title=Submarine palaeoenvironments during Emeishan flood basalt volcanism, SW China: Implications for plume–lithosphere interaction during the Capitanian, Middle Permian ('end Guadalupian') extinction event |url=https://www.sciencedirect.com/science/article/abs/pii/S0031018215003065 |journal=Palaeogeography, Palaeoclimatology, Palaeoecology |volume=441 |pages=65–73 |doi=10.1016/j.palaeo.2015.06.009 |bibcode=2016PPP...441...65J |access-date=11 January 2023}}</ref><ref>{{cite journal |last1=Retallack |first1=Gregory J. |last2=Jahren |first2=A. Hope |date=1 October 2007 |title=Methane Release from Igneous Intrusion of Coal during Late Permian Extinction Events |url=https://www.journals.uchicago.edu/doi/epdf/10.1086/524120 |journal=[[The Journal of Geology]] |volume=116 |issue=1 |pages=1–20 |doi=10.1086/524120 |s2cid=46914712 |access-date=11 January 2023|url-access=subscription }}</ref><ref>{{cite journal |last1=Sheldon |first1=Nathan D. |last2=Chakrabarti |first2=Ramananda |last3=Retallack |first3=Gregory J. |last4=Smith |first4=Roger M. H. |date=20 February 2014 |title=Contrasting geochemical signatures on land from the Middle and Late Permian extinction events |url=https://onlinelibrary.wiley.com/doi/10.1111/sed.12117 |journal=Sedimentology |volume=61 |issue=6 |pages=1812–1829 |doi=10.1111/sed.12117 |bibcode=2014Sedim..61.1812S |hdl=2027.42/108696 |s2cid=129862176 |access-date=11 January 2023|hdl-access=free }}</ref> the [[Permian–Triassic extinction event|End-Permian Extinction Event]],<ref>{{Cite journal |title = Rapid eruption of Siberian flood-volcanic rocks and evidence for coincidence with the Permian–Triassic boundary and mass extinction at 251 Ma|last = Kamo |first = SL |year=2003 |journal=Earth and Planetary Science Letters |doi = 10.1016/S0012-821X(03)00347-9 |bibcode=2003E&PSL.214...75K |volume=214 |issue = 1–2 |pages=75–91}}</ref><ref>{{cite journal |last1=Jurikova |first1=Hana |last2=Gutjahr |first2=Marcus |last3=Wallmann |first3=Klaus |last4=Flögel |first4=Sascha |last5=Liebetrau |first5=Volker |last6=Posenato |first6=Renato |last7=Angiolini |first7=Lucia |last8=Garbelli |first8=Claudio |last9=Brand |first9=Uwe |last10=Wiedenbeck |first10=Michael |last11=Eisenhauer |first11=Anton |display-authors=6 |title=Permian–Triassic mass extinction pulses driven by major marine carbon cycle perturbations |journal=[[Nature Geoscience]] |date=November 2020 |volume=13 |issue=11 |pages=745–750 |doi=10.1038/s41561-020-00646-4 |bibcode=2020NatGe..13..745J |s2cid=224783993 |url=https://www.nature.com/articles/s41561-020-00646-4 |access-date=11 January 2023 |language=en |issn=1752-0908|hdl=11573/1707839 |hdl-access=free }}</ref><ref>{{cite journal |last1=Burgess |first1=S. D. |last2=Muirhead |first2=J. D. |last3=Bowring |first3=S. A. |date=31 July 2017 |title=Initial pulse of Siberian Traps sills as the trigger of the end-Permian mass extinction |journal=[[Nature Communications]] |volume=8 |issue=1 |page=164 |doi=10.1038/s41467-017-00083-9 |pmid=28761160 |pmc=5537227 |bibcode=2017NatCo...8..164B |s2cid=3312150 }}</ref> the [[Smithian-Spathian extinction|Smithian-Spathian Extinction]],<ref>{{cite journal |last1=Paton |first1=M. T. |last2=Ivanov |first2=A. V. |last3=Fiorentini |first3=M. L. |last4=McNaughton |first4=M. J. |last5=Mudrovska |first5=I. |last6=Reznitskii |first6=L. Z. |last7=Demonterova |first7=E. I. |date=1 September 2010 |title=Late Permian and Early Triassic magmatic pulses in the Angara–Taseeva syncline, Southern Siberian Traps and their possible influence on the environment |url=https://pubs.geoscienceworld.org/rgg/article-abstract/51/9/1012/589170/Late-Permian-and-Early-Triassic-magmatic-pulses-in?redirectedFrom=fulltext |journal=Russian Geology and Geophysics |volume=51 |issue=9 |pages=1012–1020 |doi=10.1016/j.rgg.2010.08.009 |bibcode=2010RuGG...51.1012P |access-date=11 January 2023|url-access=subscription }}</ref><ref>{{cite journal |last1=Song |first1=Haijin |last2=Song |first2=Huyue |last3=Tong |first3=Jinnan |last4=Gordon |first4=Gwyneth W. |last5=Wignall |first5=Paul B. |last6=Tian |first6=Li |last7=Zheng |first7=Wang |last8=Algeo |first8=Thomas J. |last9=Liang |first9=Lei |last10=Bai |first10=Ruoyu |last11=Wu |first11=Kui |last12=Anbar |first12=Ariel D. |date=20 February 2021 |title=Conodont calcium isotopic evidence for multiple shelf acidification events during the Early Triassic |url=https://www.sciencedirect.com/science/article/abs/pii/S0009254120305775 |journal=[[Chemical Geology]] |volume=562 |page=120038 |doi=10.1016/j.chemgeo.2020.120038 |bibcode=2021ChGeo.56220038S |s2cid=233915627 |access-date=11 January 2023|url-access=subscription }}</ref><ref name="Romano et al 2012">{{cite journal |last1=Romano |first1=Carlo |last2=Goudemand |first2=Nicolas |last3=Vennemann |first3=Torsten W. |last4=Ware |first4=David |last5=Schneebeli-Hermann |first5=Elke |last6=Hochuli |first6=Peter A. |last7=Brühwiler |first7=Thomas |last8=Brinkmann |first8=Winand |last9=Bucher |first9=Hugo |date=21 December 2012 |title=Climatic and biotic upheavals following the end-Permian mass extinction |journal=Nature Geoscience |volume=6 |issue=1 |pages=57–60 |doi=10.1038/ngeo1667 |s2cid=129296231}}</ref> the [[Triassic–Jurassic extinction event|Triassic-Jurassic Extinction Event]],<ref>{{cite journal |last1=Davies |first1=J. H. F. L. |last2=Marzoli |first2=Andrea |last3=Bertrand |first3=H. |last4=Youbi |first4=Nasrrddine |last5=Ernesto |first5=M. |last6=Schaltegger |first6=U. |date=31 May 2017 |title=End-Triassic mass extinction started by intrusive CAMP activity |journal=[[Nature Communications]] |volume=8 |page=15596 |doi=10.1038/ncomms15596 |pmid=28561025 |pmc=5460029 |bibcode=2017NatCo...815596D |s2cid=13323882 }}</ref><ref name="blackburn2013">{{cite journal|last1=Blackburn|first1=Terrence J.|last2=Olsen|first2=Paul E.|last3=Bowring|first3=Samuel A.|last4=McLean|first4=Noah M.|last5=Kent|first5=Dennis V|last6=Puffer|first6=John|last7=McHone|first7=Greg|last8=Rasbury|first8=Troy|last9=Et-Touhami7|first9=Mohammed|year=2013|title=Zircon U-Pb Geochronology Links the End-Triassic Extinction with the Central Atlantic Magmatic Province|url=http://www.personal.kent.edu/~alisonjs/paleo/Blackburn_2013Tr-JExtinctionChronology.pdf|journal=Science|volume=340|issue=6135|pages=941–945|bibcode=2013Sci...340..941B|citeseerx=10.1.1.1019.4042|doi=10.1126/science.1234204|pmid=23519213|s2cid=15895416}}</ref><ref>{{cite journal |last1=Capriolo |first1=Manfredo |last2=Mills |first2=Benjamin J. W. |last3=Newton |first3=Robert J. |last4=Corso |first4=Jacobo Dal |last5=Dunhill |first5=Alexander M. |last6=Wignall |first6=Paul B. |last7=Marzoli |first7=Andrea |date=February 2022 |title=Anthropogenic-scale CO2 degassing from the Central Atlantic Magmatic Province as a driver of the end-Triassic mass extinction |journal=[[Global and Planetary Change]] |volume=209 |page=103731 |doi=10.1016/j.gloplacha.2021.103731 |bibcode=2022GPC...20903731C |s2cid=245530815 |doi-access=free |hdl=10852/91551 |hdl-access=free }}</ref> the [[Toarcian Oceanic Anoxic Event]],<ref>{{cite journal |last1=McElwain |first1=Jennifer C. |last2=Wade-Murphy |first2=Jessica |last3=Hesselbo |first3=Stephen P. |date=26 May 2005 |title=Changes in carbon dioxide during an oceanic anoxic event linked to intrusion into Gondwana coals |url=https://www.nature.com/articles/nature03618?error=cookies_not_supported&code=2345c781-b851-4d01-bcef-5615f1252f11 |journal=[[Nature (journal)|Nature]] |volume=435 |issue=7041 |pages=479–482 |doi=10.1038/nature03618 |pmid=15917805 |bibcode=2005Natur.435..479M |s2cid=4339259 |access-date=11 January 2023|url-access=subscription }}</ref><ref name="ThemEtAl">{{Cite journal |last1=Them |first1=T.R. |last2=Gill |first2=B.C. |last3=Caruthers |first3=A.H. |last4=Gröcke |first4=D.R. |last5=Tulsky |first5=E.T. |last6=Martindale |first6=R.C. |last7=Poulton |first7=T.P. |last8=Smith |first8=P.L. |date=February 2017 |title=High-resolution carbon isotope records of the Toarcian Oceanic Anoxic Event (Early Jurassic) from North America and implications for the global drivers of the Toarcian carbon cycle |journal=[[Earth and Planetary Science Letters]] |language=en |volume=459 |pages=118–126 |bibcode=2017E&PSL.459..118T |doi=10.1016/j.epsl.2016.11.021 |doi-access=free }}</ref><ref name=":36">{{Cite journal |last1=Reolid |first1=Matías |last2=Mattioli |first2=Emanuela |last3=Duarte |first3=Luís V. |last4=Ruebsam |first4=Wolfgang |date=2021-09-22 |title=The Toarcian Oceanic Anoxic Event: where do we stand? |url=https://sp.lyellcollection.org/content/early/2021/09/21/SP514-2021-74 |journal=Geological Society, London, Special Publications |language=en |volume=514 |issue=1 |pages=1–11 |bibcode=2021GSLSP.514....1R |doi=10.1144/SP514-2021-74 |issn=0305-8719 |s2cid=238683028 |access-date=11 January 2023|url-access=subscription }}</ref> the [[Cenomanian-Turonian oceanic anoxic event|Cenomanian-Turonian Oceanic Anoxic Event]],<ref>{{cite journal|last1=Kuroda|first1=J|last2=Ogawa|first2=N|last3=Tanimizu|first3=M|last4=Coffin|first4=M|last5=Tokuyama|first5=H|last6=Kitazato|first6=H|last7=Ohkouchi|first7=N|title=Contemporaneous massive subaerial volcanism and late cretaceous Oceanic Anoxic Event 2|journal=Earth and Planetary Science Letters|date=15 April 2007|volume=256|issue=1–2|pages=211–223|doi=10.1016/j.epsl.2007.01.027|issn=0012-821X|bibcode=2007E&PSL.256..211K|s2cid=129546012}}</ref><ref>{{cite journal|last1=Flögel|first1=S.|last2=Wallmann|first2=K.|last3=Poulsen|first3=C.J.|last4=Zhou|first4=J.|last5=Oschlies|first5=A.|last6=Voigt|first6=S.|last7=Kuhnt|first7=W.|title=Simulating the biogeochemical effects of volcanic CO2 degassing on the oxygen-state of the deep ocean during the Cenomanian/Turonian Anoxic Event (OAE2)|journal=Earth and Planetary Science Letters|date=May 2011|volume=305|issue=3–4|pages=371–384|doi=10.1016/j.epsl.2011.03.018|issn=0012-821X|bibcode=2011E&PSL.305..371F}}</ref><ref>{{cite journal|last1=Ernst|first1=Richard E.|last2=Youbi|first2=Nasrrddine|title=How Large Igneous Provinces affect global climate, sometimes cause mass extinctions, and represent natural markers in the geological record|journal=Palaeogeography, Palaeoclimatology, Palaeoecology|date=July 2017|volume=478|pages=30–52|doi=10.1016/j.palaeo.2017.03.014|bibcode=2017PPP...478...30E|url=https://ir.library.carleton.ca/pub/13082 }}</ref> the [[Cretaceous–Paleogene extinction event|Cretaceous-Palaeogene Extinction Event]],<ref name="Petersen, Sierra V. 2016">{{cite journal | last1 = Petersen|first1= Sierra V.|last2= Dutton|first2= Andrea|last3=Lohmann |first3=Kyger C. | year = 2016 | title = End-Cretaceous extinction in Antarctica linked to both Deccan volcanism and meteorite impact via climate change | journal = Nature Communications | volume = 7 | page = 12079 | doi = 10.1038/ncomms12079 | pmid = 27377632 | pmc = 4935969 | bibcode = 2016NatCo...712079P}}</ref><ref>{{cite journal |author1=Keller, G. |author2=Adatte, T. |author3=Gardin, S. |author4=Bartolini, A. |author5=Bajpai, S. |title=Main Deccan volcanism phase ends near the K–T boundary: Evidence from the Krishna-Godavari Basin, SE India |year=2008 |doi=10.1016/j.epsl.2008.01.015 |journal=Earth and Planetary Science Letters |volume=268 |pages=293–311 |bibcode=2008E&PSL.268..293K |issue=3–4}}</ref><ref>{{cite web |title=Causes of the Cretaceous Extinction |website=park.org/Canada |url=http://park.org/Canada/Museum/extinction/cretcause.html}}</ref> and the [[Palaeocene-Eocene Thermal Maximum]].<ref name=Gutjahr2017>{{cite journal |last1=Gutjahr |first1=Marcus |last2=Ridgwell |first2=Andy |last3=Sexton |first3=Philip F. |last4=Anagnostou |first4=Eleni |last5=Pearson |first5=Paul N. |last6=Pälike |first6=Heiko |last7=Norris |first7=Richard D. |last8=Thomas |first8=Ellen |author8-link=Ellen Thomas (scientist) |last9=Foster |first9=Gavin L. |title=Very large release of mostly volcanic carbon during the Palaeocene–Eocene Thermal Maximum |journal=Nature |date=August 2017 |volume=548 |issue=7669 |pages=573–577 |doi=10.1038/nature23646 |pmid=28858305 |pmc=5582631 |language=en |issn=1476-4687|bibcode=2017Natur.548..573G }}</ref><ref name="Kender2021">{{cite journal |last1=Kender |first1=Sev |last2=Bogus |first2=Kara |last3=Pedersen |first3=Gunver K. |last4=Dybkjær |first4=Karen |last5=Mather |first5=Tamsin A. |last6=Mariani |first6=Erica |last7=Ridgwell |first7=Andy |last8=Riding |first8=James B. |last9=Wagner |first9=Thomas |last10=Hesselbo |first10=Stephen P. |last11=Leng |first11=Melanie J. |title=Paleocene/Eocene carbon feedbacks triggered by volcanic activity |journal=Nature Communications |date=31 August 2021 |volume=12 |issue=1 |pages=5186 |doi=10.1038/s41467-021-25536-0 |pmid=34465785 |pmc=8408262 |bibcode=2021NatCo..12.5186K |language=en |issn=2041-1723|hdl=10871/126942 |hdl-access=free }}</ref><ref>{{cite journal |last1=Jones |first1=Sarah M. |last2=Hoggett |first2=Murray |last3=Greene |first3=Sarah E. |last4=Jones |first4=Tom Dunkley |date=5 December 2019 |title=Large Igneous Province thermogenic greenhouse gas flux could have initiated Paleocene-Eocene Thermal Maximum climate change |journal=[[Nature Communications]] |volume=10 |issue=1 |page=5547 |doi=10.1038/s41467-019-12957-1 |pmid=31804460 |pmc=6895149 |bibcode=2019NatCo..10.5547J }}</ref> The correlation between gigantic volcanic events expressed in the large igneous provinces and mass extinctions was shown for the last 260 million years.<ref>{{cite journal | vauthors = Courtillot V | year = 1994 | title = Mass extinctions in the last 300 million years: one impact and seven flood basalts? | journal = Israel Journal of Earth Sciences | volume = 43 | pages = 255–266 }}</ref><ref>{{cite journal | vauthors = Courtillot VE, Renne PR |title=On the ages of flood basalt events |journal=Comptes Rendus Geoscience |date=January 2003 |volume=335 |issue=1 |pages=113–140 |doi=10.1016/S1631-0713(03)00006-3 |bibcode=2003CRGeo.335..113C }}</ref> Recently such possible correlation was extended across the whole [[Phanerozoic Eon]].<ref>{{cite journal | vauthors = Kravchinsky VA |year = 2012 |title = Paleozoic large igneous provinces of Northern Eurasia: Correlation with mass extinction events |journal = Global and Planetary Change |volume = 86 |pages = 31–36 |bibcode = 2012GPC....86...31K |doi=10.1016/j.gloplacha.2012.01.007 |url=https://www.ualberta.ca/~vadim/Publications-Kravchinsky_files/2012-Kravchinsky%20-%20Paleozoic%20large%20igneous%20provinces%20of%20Northern%20Eurasia-%20Correlation%20with%20mass%20extinction%20events.pdf}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)