Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Fuzzy set
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Entropy== A measure ''d'' of fuzziness for fuzzy sets of universe <math>U</math> should fulfill the following conditions for all <math>x \in U</math>: #<math>d(A) = 0</math> if <math>A</math> is a crisp set: <math>\mu_A(x) \in \{0,\,1\}</math> #<math>d(A)</math> has a unique maximum iff <math>\forall x \in U: \mu_A(x) = 0.5</math> #<math>\forall x \in U:(\mu_A(x) \leq \mu_B(x) \leq 0.5) \or (\mu_A(x) \geq \mu_B(x) \geq 0.5)</math> ::<math>\Rightarrow d(A) \leq d(B)</math>, ::which means that ''B'' is "crisper" than ''A''. #<math>d(\neg{A}) = d(A)</math> In this case <math>d(A)</math> is called the '''entropy''' of the fuzzy set ''A''. For '''finite''' <math>U = \{x_1, x_2, ... x_n\}</math> the entropy of a fuzzy set <math>A</math> is given by :<math>d(A) = H(A) + H(\neg{A})</math>, ::<math>H(A) = -k \sum_{i=1}^n \mu_A(x_i) \ln \mu_A(x_i)</math> or just :<math>d(A) = -k \sum_{i=1}^n S(\mu_A(x_i))</math> where <math>S(x) = H_e(x)</math> is [[Binary entropy function|Shannon's function]] (natural entropy function) :<math>S(\alpha) = -\alpha \ln \alpha - (1-\alpha) \ln (1-\alpha),\ \alpha \in [0,1]</math> and <math>k</math> is a constant depending on the measure unit and the logarithm base used (here we have used the natural base [[e (mathematical constant)|e]]). The physical interpretation of ''k'' is the [[Boltzmann constant]] ''k''<sup>''B''</sup>. Let <math>A</math> be a fuzzy set with a '''continuous''' membership function (fuzzy variable). Then :<math>H(A) = -k \int_{- \infty}^\infty \operatorname{Cr} \lbrace A \geq t \rbrace \ln \operatorname{Cr} \lbrace A \geq t \rbrace \,dt</math> and its entropy is :<math>d(A) = -k \int_{- \infty}^\infty S(\operatorname{Cr} \lbrace A \geq t \rbrace )\,dt.</math><ref>{{cite journal|doi=10.1016/0165-0114(92)90239-Z|title=Entropy, distance measure and similarity measure of fuzzy sets and their relations|journal=Fuzzy Sets and Systems|volume=52|issue=3|pages=305β318|year=1992|last1=Xuecheng|first1=Liu}}</ref><ref>{{cite journal|doi=10.1186/s40467-015-0029-5|title=Fuzzy cross-entropy|journal=Journal of Uncertainty Analysis and Applications|volume=3|year=2015|last1=Li|first1=Xiang|doi-access=free}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)