Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Gamma function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Integral representations === There are many formulas, besides the Euler integral of the second kind, that express the gamma function as an integral. For instance, when the real part of {{mvar|z}} is positive,<ref>{{Cite book |last1=Gradshteyn |first1=I. S.|last2=Ryzhik |first2=I. M. |title=Table of Integrals, Series, and Products |edition=Seventh |publisher=Academic Press |year=2007 |isbn=978-0-12-373637-6|page=893}}</ref> <math display="block">\Gamma (z)=\int_{-\infty}^\infty e^{zt-e^t}\, dt</math> and<ref>Whittaker and Watson, 12.2 example 1.</ref> <math display="block">\Gamma(z) = \int_0^1 \left(\log \frac{1}{t}\right)^{z-1}\,dt,</math> <math display="block">\Gamma(z) = 2c^z\int_{0}^{\infty}t^{2z-1}e^{-ct^{2}}\,dt \,,\; c>0</math> where the three integrals respectively follow from the substitutions <math>t=e^{-x}</math>, <math>t=-\log x</math> <ref>{{Cite journal |last=Detlef |first=Gronau |title=Why is the gamma function so as it is? |url=https://imsc.uni-graz.at/gronau/TMCS_1_2003.pdf |journal=Imsc.uni-graz.at}}</ref> and <math>t=cx^2</math><ref>{{cite journal |last1=Pascal Sebah |first1=Xavier Gourdon |title=Introduction to the Gamma Function |journal=Numbers Computation |url=https://www.csie.ntu.edu.tw/~b89089/link/gammaFunction.pdf |access-date=30 January 2023 |archive-date=30 January 2023 |archive-url=https://web.archive.org/web/20230130155521/https://www.csie.ntu.edu.tw/~b89089/link/gammaFunction.pdf |url-status=dead }}</ref> in Euler's second integral. The last integral in particular makes clear the connection between the gamma function at half integer arguments and the [[Gaussian integral]]: if <math>z=1/2,\; c=1</math> we get <math display="block"> \Gamma(1/2)=2\int_{0}^{\infty}e^{-t^{2}}\,dt=\sqrt{\pi} \;. </math> Binet's first integral formula for the gamma function states that, when the real part of {{mvar|z}} is positive, then:<ref>Whittaker and Watson, 12.31.</ref> <math display="block">\operatorname{log\Gamma}(z) = \left(z - \frac{1}{2}\right)\log z - z + \frac{1}{2}\log (2\pi) + \int_0^\infty \left(\frac{1}{2} - \frac{1}{t} + \frac{1}{e^t - 1}\right)\frac{e^{-tz}}{t}\,dt.</math> The integral on the right-hand side may be interpreted as a [[Laplace transform]]. That is, <math display="block">\log\left(\Gamma(z)\left(\frac{e}{z}\right)^z\sqrt{\frac{z}{2\pi}}\right) = \mathcal{L}\left(\frac{1}{2t} - \frac{1}{t^2} + \frac{1}{t(e^t - 1)}\right)(z).</math> Binet's second integral formula states that, again when the real part of {{mvar|z}} is positive, then:<ref>Whittaker and Watson, 12.32.</ref> <math display="block">\operatorname{log\Gamma}(z) = \left(z - \frac{1}{2}\right)\log z - z + \frac{1}{2}\log(2\pi) + 2\int_0^\infty \frac{\arctan(t/z)}{e^{2\pi t} - 1}\,dt.</math> Let {{math|''C''}} be a [[Hankel contour]], meaning a path that begins and ends at the point {{math|β}} on the [[Riemann sphere]], whose unit tangent vector converges to {{math|β1}} at the start of the path and to {{math|1}} at the end, which has [[winding number]] 1 around {{math|0}}, and which does not cross {{closed-open|0, β}}. Fix a branch of <math>\log(-t)</math> by taking a branch cut along {{closed-open|0, β}} and by taking <math>\log(-t)</math> to be real when {{math|t}} is on the negative real axis. Assume {{mvar|z}} is not an integer. Then Hankel's formula for the gamma function is:<ref>Whittaker and Watson, 12.22.</ref> <math display="block">\Gamma(z) = -\frac{1}{2i\sin \pi z}\int_C (-t)^{z-1}e^{-t}\,dt,</math> where <math>(-t)^{z-1}</math> is interpreted as <math>\exp((z-1)\log(-t))</math>. The reflection formula leads to the closely related expression <math display="block">\frac{1}{\Gamma(z)} = \frac{i}{2\pi}\int_C (-t)^{-z}e^{-t}\,dt,</math> again valid whenever {{math|''z''}} is not an integer.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)