Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Geometric distribution
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Statistical inference== The true parameter <math>p</math> of an unknown geometric distribution can be inferred through estimators and conjugate distributions. === Method of moments === Provided they exist, the first <math>l</math> moments of a probability distribution can be estimated from a sample <math>x_1, \dotsc, x_n</math> using the formula<math display="block">m_i = \frac{1}{n} \sum_{j=1}^n x^i_j</math>where <math>m_i</math> is the <math>i</math>th sample moment and <math>1 \leq i \leq l</math>.<ref name=":5">{{Cite book |last1=Evans |first1=Michael |url=https://www.utstat.toronto.edu/mikevans/jeffrosenthal/ |title=Probability and Statistics: The Science of Uncertainty |last2=Rosenthal |first2=Jeffrey |year=2023 |isbn=978-1429224628 |edition=2nd |pages= |publisher=Macmillan Learning |language=en}}</ref>{{Rp|pages=349–350}} Estimating <math>\mathrm{E}(X)</math> with <math>m_1</math> gives the [[sample mean]], denoted <math> \bar{x} </math>. Substituting this estimate in the formula for the expected value of a geometric distribution and solving for <math> p </math> gives the estimators <math> \hat{p} = \frac{1}{\bar{x}} </math> and <math> \hat{p} = \frac{1}{\bar{x}+1} </math> when supported on <math>\mathbb{N}</math> and <math>\mathbb{N}_0</math> respectively. These estimators are [[Biased estimator|biased]] since <math>\mathrm{E}\left(\frac{1}{\bar{x}}\right) > \frac{1}{\mathrm{E}(\bar{x})} = p</math> as a result of [[Jensen's inequality]].<ref name=":3">{{Cite book |last1=Held |first1=Leonhard |url=https://link.springer.com/10.1007/978-3-662-60792-3 |title=Likelihood and Bayesian Inference: With Applications in Biology and Medicine |last2=Sabanés Bové |first2=Daniel |date=2020 |publisher=Springer Berlin Heidelberg |isbn=978-3-662-60791-6 |series=Statistics for Biology and Health |location=Berlin, Heidelberg |language=en |doi=10.1007/978-3-662-60792-3}}</ref>{{Rp|pages=53–54}} === Maximum likelihood estimation === The [[maximum likelihood estimator]] of <math>p</math> is the value that maximizes the [[likelihood function]] given a sample.<ref name=":5" />{{Rp|page=308}} By finding the [[Zero of a function|zero]] of the [[derivative]] of the [[Log-likelihood|log-likelihood function]] when the distribution is defined over <math>\mathbb{N}</math>, the maximum likelihood estimator can be found to be <math>\hat{p} = \frac{1}{\bar{x}}</math>, where <math>\bar{x}</math> is the sample mean.<ref>{{Cite web |last=Siegrist |first=Kyle |date=2020-05-05 |title=7.3: Maximum Likelihood |url=https://stats.libretexts.org/Bookshelves/Probability_Theory/Probability_Mathematical_Statistics_and_Stochastic_Processes_(Siegrist)/07%3A_Point_Estimation/7.03%3A_Maximum_Likelihood |access-date=2024-06-20 |website=Statistics LibreTexts |language=en}}</ref> If the domain is <math>\mathbb{N}_0</math>, then the estimator shifts to <math>\hat{p} = \frac{1}{\bar{x}+1}</math>. As previously discussed in [[Geometric distribution#Method of moments|§ Method of moments]], these estimators are biased. Regardless of the domain, the bias is equal to : <math> b \equiv \operatorname{E}\bigg[\;(\hat p_\mathrm{mle} - p)\;\bigg] = \frac{p\,(1-p)}{n} </math> which yields the [[Maximum likelihood estimation#Higher-order properties|bias-corrected maximum likelihood estimator]],{{Cn|date=July 2024}} : <math> \hat{p\,}^*_\text{mle} = \hat{p\,}_\text{mle} - \hat{b\,} </math> === Bayesian inference === In [[Bayesian inference]], the parameter <math>p</math> is a random variable from a [[prior distribution]] with a [[posterior distribution]] calculated using [[Bayes' theorem]] after observing samples.<ref name=":3" />{{Rp|page=167}} If a [[beta distribution]] is chosen as the prior distribution, then the posterior will also be a beta distribution and it is called the [[conjugate distribution]]. In particular, if a <math>\mathrm{Beta}(\alpha,\beta)</math> prior is selected, then the posterior, after observing samples <math>k_1, \dotsc, k_n \in \mathbb{N}</math>, is<ref>{{Cite CiteSeerX |citeseerx=10.1.1.157.5540 |first=Daniel |last=Fink |title=A Compendium of Conjugate Priors}}</ref><math display="block">p \sim \mathrm{Beta}\left(\alpha+n,\ \beta+\sum_{i=1}^n (k_i-1)\right). \!</math>Alternatively, if the samples are in <math>\mathbb{N}_0</math>, the posterior distribution is<ref>{{Cite web|url=http://halweb.uc3m.es/esp/Personal/personas/mwiper/docencia/English/PhD_Bayesian_Statistics/ch3_2009.pdf |archive-url=https://web.archive.org/web/20100408092905/http://halweb.uc3m.es/esp/Personal/personas/mwiper/docencia/English/PhD_Bayesian_Statistics/ch3_2009.pdf |archive-date=2010-04-08 |url-status=live|title=3. Conjugate families of distributions}}</ref><math display="block">p \sim \mathrm{Beta}\left(\alpha+n,\beta+\sum_{i=1}^n k_i\right).</math>Since the expected value of a <math>\mathrm{Beta}(\alpha,\beta)</math> distribution is <math>\frac{\alpha}{\alpha+\beta}</math>,<ref name=":9" />{{Rp|page=145}} as <math>\alpha</math> and <math>\beta</math> approach zero, the posterior mean approaches its maximum likelihood estimate.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)