Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Green's function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Further examples== * Let {{math|1=''n'' = 1}} and let the subset be all of {{math|'''R'''}}. Let {{mvar|L}} be <math display="inline">\frac{d}{dx}</math>. Then, the [[Heaviside step function]] {{math|Ξ(''x'' β ''x''<sub>0</sub>)}} is a Green's function of {{math|''L''}} at {{math|''x''<sub>0</sub>}}. * Let {{math|1=''n'' = 2}} and let the subset be the quarter-plane {{math|1={(''x'', ''y'') : ''x'', ''y'' β₯ 0}<nowiki/>}} and {{mvar|L}} be the [[Laplacian]]. Also, assume a [[Dirichlet boundary condition]] is imposed at {{math|1=''x'' = 0}} and a [[Neumann boundary condition]] is imposed at {{math|1=''y'' = 0}}. Then the X10Y20 Green's function is <math display="block"> \begin{align} G(x, y, x_0, y_0) = \dfrac{1}{2\pi} &\left[\ln\sqrt{\left(x-x_0\right)^2+\left(y-y_0\right)^2} - \ln\sqrt{\left(x+x_0\right)^2 + \left(y-y_0\right)^2} \right. \\[5pt] &\left. {} + \ln\sqrt{\left(x-x_0\right)^2 + \left(y+y_0\right)^2}- \ln\sqrt{\left(x+x_0\right)^2 + \left(y+y_0\right)^2} \, \right]. \end{align}</math> * Let <math> a < x < b </math>, and all three are elements of the real numbers. Then, for any function <math>f:\mathbb{R}\to\mathbb{R}</math> with an <math>n</math>-th derivative that is integrable over the interval <math>[a, b]</math>: <math display="block"> f(x) = \sum_{m=0}^{n-1} \frac{(x - a)^m}{m!} \left[ \frac{d^m f}{d x^m} \right]_{x=a} + \int_a^b \left[\frac{(x - s)^{n-1}}{(n-1)!} \Theta(x - s)\right] \left[ \frac{d^n f}{dx^n} \right]_{x=s} ds \,.</math> The Green's function in the above equation, <math>G(x,s) = \frac{(x - s)^{n-1}}{(n-1)!} \Theta(x - s)</math>, is not unique. How is the equation modified if <math>g(x-s)</math> is added to <math>G(x,s)</math>, where <math>g(x)</math> satisfies <math display="inline">\frac{d^n g}{d x^n} = 0</math> for all <math>x \in [a, b]</math> (for example, <math>g(x) = -x/2</math> with {{nowrap|<math>n=2</math>)?}} Also, compare the above equation to the form of a [[Taylor series]] centered at <math>x = a</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)