Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Hermite polynomials
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Asymptotic expansion=== Asymptotically, as {{math|''n'' β β}}, the expansion<ref>{{harvnb|Abramowitz|Stegun|1983|page=508β510}}, [http://www.math.sfu.ca/~cbm/aands/page_508.htm 13.6.38 and 13.5.16].</ref> <math display="block">e^{-\frac{x^2}{2}}\cdot H_n(x) \sim \frac{2^n}{\sqrt \pi}\Gamma\left(\frac{n+1}2\right) \cos \left(x \sqrt{2 n}- \frac{n\pi}{2} \right)</math> holds true. For certain cases concerning a wider range of evaluation, it is necessary to include a factor for changing amplitude: <math display="block">e^{-\frac{x^2}{2}}\cdot H_n(x) \sim \frac{2^n}{\sqrt \pi}\Gamma\left(\frac{n+1}2\right) \cos \left(x \sqrt{2 n}- \frac{n\pi}{2} \right)\left(1-\frac{x^2}{2n+1}\right)^{-\frac14}=\frac{\Gamma(n)}{\Gamma\left(\frac{n}2\right)} \cos \left(x \sqrt{2 n}- \frac{n\pi}{2} \right)\left(1-\frac{x^2}{2n+1}\right)^{-\frac14},</math> which, using [[Stirling's approximation]], can be further simplified, in the limit, to <math display="block">e^{-\frac{x^2}{2}}\cdot H_n(x) \sim \left(\frac{2n}{e}\right)^{\frac{n}{2}} \sqrt{2} \cos \left(x \sqrt{2n}- \frac{n\pi}{2} \right)\left(1-\frac{x^2}{2n+1}\right)^{-\frac14}.</math> This expansion is needed to resolve the [[wavefunction]] of a [[quantum harmonic oscillator]] such that it agrees with the classical approximation in the limit of the [[correspondence principle]]. A better approximation, which accounts for the variation in frequency, is given by <math display="block">e^{-\frac{x^2}{2}}\cdot H_n(x) \sim \left(\frac{2n}{e}\right)^{\frac{n}{2}} \sqrt{2} \cos \left(x \sqrt{2n+1-\frac{x^2}{3}}- \frac {n\pi}{2} \right)\left(1-\frac{x^2}{2n+1}\right)^{-\frac14}.</math> A finer approximation,<ref>{{harvnb|SzegΕ|1955|p=201}}</ref> which takes into account the uneven spacing of the zeros near the edges, makes use of the substitution <math display="block">x = \sqrt{2n + 1}\cos(\varphi), \quad 0 < \varepsilon \leq \varphi \leq \pi - \varepsilon,</math> with which one has the uniform approximation <math display="block">e^{-\frac{x^2}{2}}\cdot H_n(x) = 2^{\frac{n}{2}+\frac14}\sqrt{n!}(\pi n)^{-\frac14}(\sin \varphi)^{-\frac12} \cdot \left(\sin\left(\frac{3\pi}{4} + \left(\frac{n}{2} + \frac{1}{4}\right)\left(\sin 2\varphi-2\varphi\right) \right)+O\left(n^{-1}\right) \right).</math> Similar approximations hold for the monotonic and transition regions. Specifically, if <math display="block">x = \sqrt{2n+1} \cosh(\varphi), \quad 0 < \varepsilon \leq \varphi \leq \omega < \infty,</math> then <math display="block">e^{-\frac{x^2}{2}}\cdot H_n(x) = 2^{\frac{n}{2}-\frac34}\sqrt{n!}(\pi n)^{-\frac14}(\sinh \varphi)^{-\frac12} \cdot e^{\left(\frac{n}{2}+\frac{1}{4}\right)\left(2\varphi-\sinh 2\varphi\right)}\left(1+O\left(n^{-1}\right) \right),</math> while for <math display="block">x = \sqrt{2n + 1} + t</math> with {{mvar|t}} complex and bounded, the approximation is <math display="block">e^{-\frac{x^2}{2}}\cdot H_n(x) =\pi^{\frac14}2^{\frac{n}{2}+\frac14}\sqrt{n!}\, n^{-\frac{1}{12}}\left( \operatorname{Ai}\left(2^{\frac12}n^{\frac16}t\right)+ O\left(n^{-\frac23}\right) \right),</math> where {{math|Ai}} is the [[Airy function]] of the first kind.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)