Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Hidden Markov model
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Learning == The parameter learning task in HMMs is to find, given an output sequence or a set of such sequences, the best set of state transition and emission probabilities. The task is usually to derive the [[maximum likelihood]] estimate of the parameters of the HMM given the set of output sequences. No tractable algorithm is known for solving this problem exactly, but a local maximum likelihood can be derived efficiently using the [[Baum–Welch algorithm]] or the Baldi–Chauvin algorithm. The Baum–Welch algorithm is a special case of the [[expectation-maximization algorithm]]. If the HMMs are used for time series prediction, more sophisticated Bayesian inference methods, like [[Markov chain Monte Carlo]] (MCMC) sampling are proven to be favorable over finding a single maximum likelihood model both in terms of accuracy and stability.<ref>Sipos, I. Róbert. ''Parallel stratified MCMC sampling of AR-HMMs for stochastic time series prediction''. In: Proceedings, 4th Stochastic Modeling Techniques and Data Analysis International Conference with Demographics Workshop (SMTDA2016), pp. 295-306. Valletta, 2016. [http://1drv.ms/b/s!ApL_0Av0YGDLglwEOv1aYAGbmQeL PDF]</ref> Since MCMC imposes significant computational burden, in cases where computational scalability is also of interest, one may alternatively resort to variational approximations to Bayesian inference, e.g.<ref>{{cite journal |url=http://users.iit.demokritos.gr/~dkosmo/downloads/patrec10/vbb10.pdf |doi=10.1016/j.patcog.2010.09.001 |volume=44 |issue=2 |title=A variational Bayesian methodology for hidden Markov models utilizing Student's-t mixtures |year=2011 |journal=Pattern Recognition |pages=295–306 |last1=Chatzis |first1=Sotirios P. |last2=Kosmopoulos |first2=Dimitrios I. |bibcode=2011PatRe..44..295C |citeseerx=10.1.1.629.6275 |access-date=2018-03-11 |archive-date=2011-04-01 |archive-url=https://web.archive.org/web/20110401184517/http://users.iit.demokritos.gr/~dkosmo/downloads/patrec10/vbb10.pdf |url-status=dead}}</ref> Indeed, approximate variational inference offers computational efficiency comparable to expectation-maximization, while yielding an accuracy profile only slightly inferior to exact MCMC-type Bayesian inference.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)