Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
History of atomic theory
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Discovery of the neutron== Physicists in the 1920s believed that the atomic nucleus contained protons plus a number of "nuclear electrons" that reduced the overall charge. These "nuclear electrons" were distinct from the electrons that orbited the nucleus. This incorrect hypothesis would have explained why the atomic numbers of the elements were less than their atomic weights, and why radioactive elements emit electrons ([[beta radiation]]) in the process of nuclear decay. Rutherford even hypothesized that a proton and an electron could bind tightly together into a "neutral doublet". Rutherford wrote that the existence of such "neutral doublets" moving freely through space would provide a more plausible explanation for how the heavier elements could have formed in the genesis of the Universe, given that it is hard for a lone proton to fuse with a large atomic nucleus because of the repulsive electric field.<ref>{{cite journal |author=Sir E. Rutherford |date=1920 |journal=Proceedings of the Royal Society of London. Series A |volume=97 |title=Bakerian Lecture: Nuclear Constitution of Atoms |issue=686 |pages=374β400 |doi=10.1098/rspa.1920.0040 |bibcode=1920RSPSA..97..374R |url=https://archive.org/details/philtrans03522247/mode/2up?q=doublet|doi-access=free }}: "Under some conditions, however, it may be possible for an electron to combine much more closely with the H nucleus, forming a kind of neutral doublet. [...] The existence of such atoms seems almost necessary to explain the building up of the nuclei of heavy elements; for unless we suppose the production of charged particles of very high velocities it is difficult to see how any positively charged particle can reach the nucleus of a heavy atom against its intense repulsive field."</ref> In 1928, [[Walter Bothe]] observed that [[beryllium]] emitted a highly penetrating, electrically neutral radiation when bombarded with alpha particles. It was later discovered that this radiation could knock hydrogen atoms out of [[paraffin wax]]. Initially it was thought to be high-energy [[gamma radiation]], since gamma radiation had a similar effect on electrons in metals, but [[James Chadwick]] found that the [[ionization]] effect was too strong for it to be due to electromagnetic radiation, so long as energy and momentum were conserved in the interaction. In 1932, Chadwick exposed various elements, such as hydrogen and nitrogen, to the mysterious "beryllium radiation", and by measuring the energies of the recoiling charged particles, he deduced that the radiation was actually composed of electrically neutral particles which could not be massless like the gamma ray, but instead were required to have a mass similar to that of a proton. Chadwick called this new particle "the neutron" and believed that it to be a proton and electron fused together because the neutron had about the same mass as a proton and an electron's mass is negligible by comparison.<ref>{{cite journal|author=Chadwick, James|year=1932|url=http://web.mit.edu/22.54/resources/Chadwick.pdf |archive-url=https://ghostarchive.org/archive/20221009/http://web.mit.edu/22.54/resources/Chadwick.pdf |archive-date=2022-10-09 |url-status=live |title=Possible Existence of a Neutron|doi=10.1038/129312a0|journal=Nature|page=312|volume=129|bibcode = 1932Natur.129Q.312C|issue=3252|s2cid=4076465|doi-access=free}}</ref> Neutrons are not in fact a fusion of a proton and an electron.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)