Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Imaginary unit
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Roots === [[File:Imaginary2Root.svg|thumb|right|200px|The two square roots of {{mvar|i}} in the complex plane]] Just like all nonzero complex numbers, <math display=inline>i = e^{\pi i/ 2}</math> has two distinct [[square root]]s which are [[additive inverse]]s. In polar form, they are <math display=block>\begin{alignat}{3} \sqrt{i} &= {\exp}\bigl(\tfrac12{\pi i}\bigr)^{1/2} &&{}= {\exp}\bigl(\tfrac14\pi i\bigr), \\ -\sqrt{i} &= {\exp}\bigl(\tfrac14{\pi i}-\pi i\bigr) &&{}= {\exp}\bigl({-\tfrac34\pi i}\bigr). \end{alignat}</math> In rectangular form, they are{{efn|To find such a number, one can solve the equation {{math|1=(''x'' + ''iy''){{sup|2}} = ''i''}} where {{mvar|x}} and {{mvar|y}} are real parameters to be determined, or equivalently {{math|1=''x''{{isup|2}} + 2''ixy'' β ''y''{{isup|2}} = ''i''.}} Because the real and imaginary parts are always separate, we regroup the terms, {{math|1=''x''{{isup|2}} β ''y''{{isup|2}} + 2''ixy'' = 0 + ''i''.}} By [[equating coefficients]], separating the real part and imaginary part, we have a system of two equations: <math display=block>\begin{align} x^{2} - y^{2} &= 0 \\[3mu] 2xy &= 1. \end{align}</math> Substituting <math display=inline>y=\tfrac12x^{-1}</math> into the first equation, we get <math display=inline> x^{2} - \tfrac14x^{-2} = 0</math> <math display=inline>\implies 4x^4 = 1.</math> Because {{mvar|x}} is a real number, this equation has two real solutions for {{mvar|x}}<math display=block>x=\tfrac{1}{\sqrt{2}}</math> and <math>x=-\tfrac{1}{\sqrt{2}}</math>. Substituting either of these results into the equation {{math|1=2''xy'' = 1}} in turn, we will get the corresponding result for {{mvar|y}}. Thus, the square roots of {{mvar|i}} are the numbers <math>\tfrac{1}{\sqrt{2}} + \tfrac{1}{\sqrt{2}}i</math> and <math>-\tfrac{1}{\sqrt{2}}-\tfrac{1}{\sqrt{2}}i</math>.<ref>{{cite web |website=University of Toronto Mathematics Network |title=What is the square root of {{mvar|i}} ? |access-date=26 March 2007 |url=http://www.math.utoronto.ca/mathnet/questionCorner/rootofi.html}}</ref>}} <math display=block>\begin{alignat}{3} \sqrt{i} &= \frac{1 + i}{ \sqrt{2}} &&{}= \phantom{-}\tfrac{\sqrt{2}}{2} + \tfrac{\sqrt{2}}{2}i, \\[5mu] -\sqrt{i} &= - \frac{1 + i}{ \sqrt{2}} &&{}= - \tfrac{\sqrt{2}}{2} - \tfrac{\sqrt{2}}{2}i. \end{alignat}</math> Squaring either expression yields <math display=block> \left( \pm \frac{1 + i}{\sqrt2} \right)^2 = \frac{1 + 2i - 1}{2} = \frac{2i}{2} = i. </math> [[File:Imaginary3Root.svg|thumb|right|200px|The three cube roots of {{mvar|i}} in the complex plane]] The three [[cube root]]s of {{mvar|i}} are<ref>{{Cite book |last1=Zill |first1=Dennis G. |url=https://www.worldcat.org/oclc/50495529 |title=A first course in complex analysis with applications |last2=Shanahan |first2=Patrick D. |year=2003 |publisher=Jones and Bartlett |isbn=0-7637-1437-2 |location=Boston |pages=24β25 |oclc=50495529}}</ref> <math display=block> \sqrt[3]i = {\exp}\bigl(\tfrac16 \pi i\bigr) = \tfrac{\sqrt{3}}{2} + \tfrac12i, \quad {\exp}\bigl(\tfrac56 \pi i\bigr) = -\tfrac{\sqrt{3}}{2} + \tfrac12i, \quad {\exp}\bigl({-\tfrac12 \pi i}\bigr) = -i. </math> For a general positive integer {{mvar|n}}, the [[nth root|{{mvar|n}}-th roots]] of {{mvar|i}} are, for {{math|1=''k'' = 0, 1, ..., ''n'' β 1,}} <math display=block> \exp \left(2 \pi i \frac{k+\frac14}{n} \right) = \cos \left(\frac{4k+1}{2n}\pi \right) + i \sin \left(\frac{4k+1}{2n}\pi \right). </math> The value associated with {{math|1=''k'' = 0}} is the [[principal value|principal]] {{mvar|n}}-th root of {{mvar|i}}. The set of roots equals the corresponding set of [[root of unity|roots of unity]] rotated by the principal {{mvar|n}}-th root of {{mvar|i}}. These are the vertices of a [[regular polygon]] inscribed within the complex [[unit circle]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)