Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Incircle and excircles
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Gergonne triangle and point=== [[File:Intouch Triangle and Gergonne Point.svg|right|frame| {{legend-line|solid black|Triangle {{math|β³''ABC''}}}} {{legend-line|solid #728fce|Incircle ([[incenter]] at {{mvar|I}})}} {{legend-line|solid red|Contact triangle {{math|β³''T{{sub|A}}T{{sub|B}}T{{sub|C}}''}}}} {{legend-line|solid #1dc404|Lines between opposite vertices of {{math|β³''ABC''}} and {{math|β³''T{{sub|A}}T{{sub|B}}T{{sub|C}}''}} (concur at Gergonne point {{mvar|G{{sub|e}}}})}} ]] The '''Gergonne triangle''' (of <math>\triangle ABC</math>) is defined by the three touchpoints of the incircle on the three sides. The touchpoint opposite <math>A</math> is denoted <math>T_A</math>, etc. This Gergonne triangle, <math>\triangle T_AT_BT_C</math>, is also known as the '''contact triangle''' or '''intouch triangle''' of <math>\triangle ABC</math>. Its area is :<math display=block>K_T = K\frac{2r^2 s}{abc}</math> where <math>K</math>, <math>r</math>, and <math>s</math> are the area, radius of the incircle, and semiperimeter of the original triangle, and <math>a</math>, <math>b</math>, and <math>c</math> are the side lengths of the original triangle. This is the same area as that of the [[extouch triangle]].<ref> Weisstein, Eric W. "Contact Triangle." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/ContactTriangle.html</ref> The three lines <math>AT_A</math>, <math>BT_B</math>, and <math>CT_C</math> intersect in a single point called the '''Gergonne point''', denoted as <math>G_e</math> (or [[triangle center]] ''X''<sub>7</sub>). The Gergonne point lies in the open [[orthocentroidal disk]] punctured at its own center, and can be any point therein.<ref name=Bradley>Christopher J. Bradley and Geoff C. Smith, "The locations of triangle centers", ''[[Forum Geometricorum]]'' 6 (2006), 57β70. http://forumgeom.fau.edu/FG2006volume6/FG200607index.html</ref> The Gergonne point of a triangle has a number of properties, including that it is the [[symmedian point]] of the Gergonne triangle.<ref> {{cite journal |last=Dekov |first=Deko |title=Computer-generated Mathematics : The Gergonne Point |journal=Journal of Computer-generated Euclidean Geometry |year=2009 |volume=1 |pages=1–14 |url=http://www.dekovsoft.com/j/2009/01/JCGEG200901.pdf |url-status=dead |archive-url=https://web.archive.org/web/20101105045604/http://www.dekovsoft.com/j/2009/01/JCGEG200901.pdf |archive-date=2010-11-05 }}</ref> [[Trilinear coordinates]] for the vertices of the intouch triangle are given by{{Citation needed|date=May 2020}} :<math display=block>\begin{array}{ccccccc} T_A &=& 0 &:& \sec^2 \frac{B}{2} &:& \sec^2\frac{C}{2} \\[2pt] T_B &=& \sec^2 \frac{A}{2} &:& 0 &:& \sec^2\frac{C}{2} \\[2pt] T_C &=& \sec^2 \frac{A}{2} &:& \sec^2\frac{B}{2} &:& 0. \end{array}</math> Trilinear coordinates for the Gergonne point are given by{{Citation needed|date=May 2020}} :<math display=block>\sec^2\tfrac{A}{2} : \sec^2\tfrac{B}{2} : \sec^2\tfrac{C}{2},</math> or, equivalently, by the [[Law of Sines]], :<math display=block>\frac{bc}{b + c - a} : \frac{ca}{c + a - b} : \frac{ab}{a + b - c}.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)