Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Interval (mathematics)
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Intervals in posets and preordered sets === {{main article|interval (order theory)}} ==== Definitions ==== The concept of intervals can be defined in arbitrary [[partially ordered set]]s or more generally, in arbitrary [[preordered set]]s. For a [[preordered set]] <math>(X,\lesssim)</math> and two elements <math>a,b\in X,</math> one similarly defines the intervals<ref name="Vind">{{cite book |last=Vind |first=Karl |title=Independence, additivity, uncertainty |language=en |series=Studies in Economic Theory |volume=14 |publisher=Springer |location=Berlin |date=2003 |isbn=978-3-540-41683-8 |doi=10.1007/978-3-540-24757-9 |zbl=1080.91001 }}</ref>{{rp|11, Definition 11}} :<math>(a,b) =\{x\in X \mid a<x<b\},</math> :<math>[a,b] =\{x\in X \mid a\lesssim x\lesssim b\},</math> :<math>(a,b] =\{x\in X \mid a<x\lesssim b\},</math> :<math>[a,b) =\{x\in X \mid a\lesssim x<b\},</math> :<math>(a,\infty) =\{x\in X \mid a<x\},</math> :<math>[a,\infty) =\{x\in X \mid a\lesssim x\},</math> :<math>(-\infty,b) =\{x\in X \mid x<b\},</math> :<math>(-\infty,b] =\{x\in X \mid x\lesssim b\},</math> :<math>(-\infty,\infty) =X,</math> where <math>x<y</math> means <math>x\lesssim y\not\lesssim x.</math> Actually, the intervals with single or no endpoints are the same as the intervals with two endpoints in the larger preordered set :<math>\bar X=X\sqcup\{-\infty,\infty\}</math> :<math>-\infty<x<\infty\qquad(\forall x\in X)</math> defined by adding new smallest and greatest elements (even if there were ones), which are subsets of <math>X.</math> In the case of <math>X=\mathbb R</math> one may take <math>\bar\mathbb R</math> to be the [[extended real line]]. ==== Convex sets and convex components in order theory ==== {{main article|convex set (order theory)}} A subset <math>A\subseteq X</math> of the [[preordered set]] <math>(X,\lesssim)</math> is '''(order-)convex''' if for every <math>x,y\in A</math> and every <math>x\lesssim z\lesssim y</math> we have <math>z\in A.</math> Unlike in the case of the real line, a convex set of a preordered set need not be an interval. For example, in the [[totally ordered set]] <math>(\mathbb Q,\le)</math> of [[rational number]]s, the set :<math>\mathbb Q=\{x\in\mathbb Q \mid x^2<2\}</math> is convex, but not an interval of <math>\mathbb Q,</math> since there is no square root of two in <math>\mathbb Q.</math> Let <math>(X,\lesssim)</math> be a [[preordered set]] and let <math>Y\subseteq X.</math> The convex sets of <math>X</math> contained in <math>Y</math> form a [[poset]] under inclusion. A [[maximal element]] of this poset is called a '''convex component''' of <math>Y.</math><ref name="Heath">{{cite journal |last1=Heath |first1=R. W. |last2=Lutzer |first2=David J. |last3=Zenor |first3=P. L. |title=Monotonically normal spaces |language=en |journal=Transactions of the American Mathematical Society |volume=178 |pages=481β493 |date=1973 |issn=0002-9947 |doi=10.2307/1996713 |jstor=1996713 |mr=0372826 |zbl=0269.54009 |doi-access=free }}</ref>{{rp|Definition 5.1}}<ref name="Steen">{{cite journal |last=Steen |first=Lynn A. |title=A direct proof that a linearly ordered space is hereditarily collection-wise normal |language=en |journal=Proceedings of the American Mathematical Society |volume=24 |pages=727β728 |date=1970 |issue=4 |issn=0002-9939 |doi=10.2307/2037311 |jstor=2037311 |mr=0257985 |zbl=0189.53103 |doi-access=free }}</ref>{{rp|727}} By the [[Zorn lemma]], any convex set of <math>X</math> contained in <math>Y</math> is contained in some convex component of <math>Y,</math> but such components need not be unique. In a [[totally ordered set]], such a component is always unique. That is, the convex components of a subset of a totally ordered set form a [[partition of a set|partition]]. ==== Properties ==== A generalization of the characterizations of the real intervals follows. For a non-empty subset <math>I</math> of a [[linear continuum]] <math>(L,\le),</math> the following conditions are equivalent.<ref name="Munkres">{{cite book |url=http://www.pearsonhighered.com/bookseller/product/Topology/9780131816299.page |first=James R. |last=Munkres |author-link=James Munkres |title=Topology |language=en |edition=2 |publisher=Prentice Hall |year=2000 |isbn=978-0-13-181629-9 |zbl=0951.54001 |mr=0464128 }}</ref>{{rp|153, Theorem 24.1}} * The set <math>I</math> is an interval. * The set <math>I</math> is order-convex. * The set <math>I</math> is a connected subset when <math>L</math> is endowed with the [[order topology]]. For a [[subset]] <math>S</math> of a [[lattice (order theory)|lattice]] <math>L,</math> the following conditions are equivalent. * The set <math>S</math> is a [[sublattice]] and an (order-)convex set. * There is an [[ideal (order theory)|ideal]] <math>I\subseteq L</math> and a [[filter (mathematics)|filter]] <math>F\subseteq L</math> such that <math>S=I\cap F.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)