Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Inverse function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Real-world examples == * Let {{mvar|f}} be the function that converts a temperature in degrees [[Celsius]] to a temperature in degrees [[Fahrenheit]], <math display="block"> F = f(C) = \tfrac95 C + 32 ;</math> then its inverse function converts degrees Fahrenheit to degrees Celsius, <math display="block"> C = f^{-1}(F) = \tfrac59 (F - 32) ,</math><ref name=":1">{{Cite web|title=Inverse Functions|url=https://www.mathsisfun.com/sets/function-inverse.html|access-date=2020-09-08|website=www.mathsisfun.com}}</ref> since <math display="block"> \begin{align} f^{-1} (f(C)) = {} & f^{-1}\left( \tfrac95 C + 32 \right) = \tfrac59 \left( (\tfrac95 C + 32 ) - 32 \right) = C, \\ & \text{for every value of } C, \text{ and } \\[6pt] f\left(f^{-1}(F)\right) = {} & f\left(\tfrac59 (F - 32)\right) = \tfrac95 \left(\tfrac59 (F - 32)\right) + 32 = F, \\ & \text{for every value of } F. \end{align} </math> * Suppose {{mvar|f}} assigns each child in a family its birth year. An inverse function would output which child was born in a given year. However, if the family has children born in the same year (for instance, twins or triplets, etc.) then the output cannot be known when the input is the common birth year. As well, if a year is given in which no child was born then a child cannot be named. But if each child was born in a separate year, and if we restrict attention to the three years in which a child was born, then we do have an inverse function. For example, <math display="block">\begin{align} f(\text{Allan})&=2005 , \quad & f(\text{Brad})&=2007 , \quad & f(\text{Cary})&=2001 \\ f^{-1}(2005)&=\text{Allan} , \quad & f^{-1}(2007)&=\text{Brad} , \quad & f^{-1}(2001)&=\text{Cary} \end{align} </math> * Let {{mvar|R}} be the function that leads to an {{mvar|x}} percentage rise of some quantity, and {{mvar|F}} be the function producing an {{mvar|x}} percentage fall. Applied to $100 with {{mvar|x}} = 10%, we find that applying the first function followed by the second does not restore the original value of $100, demonstrating the fact that, despite appearances, these two functions are not inverses of each other. * The formula to calculate the pH of a solution is {{math|1=pH = βlog<sub>10</sub>[H<sup>+</sup>]}}. In many cases we need to find the concentration of acid from a pH measurement. The inverse function {{math|1=[H<sup>+</sup>] = 10<sup>βpH</sup>}} is used.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)