Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Isomorphism theorems
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Modules == The statements of the isomorphism theorems for [[module (mathematics)|modules]] are particularly simple, since it is possible to form a [[quotient module]] from any [[submodule]]. The isomorphism theorems for [[vector space]]s (modules over a [[field (mathematics)|field]]) and [[abelian group]]s (modules over <math>\mathbb{Z}</math>) are special cases of these. For [[dimension (vector space)|finite-dimensional]] vector spaces, all of these theorems follow from the [[rank–nullity theorem]]. In the following, "module" will mean "''R''-module" for some fixed ring ''R''. === Theorem A (modules) === Let <math>M</math> and <math>N</math> be modules, and let <math>\varphi:M\rightarrow N</math> be a [[module homomorphism]]. Then: # The [[kernel (algebra)|kernel]] of <math>\varphi</math> is a submodule of <math>M</math>, # The [[image (mathematics)|image]] of <math>\varphi</math> is a submodule of <math>N</math>, and # The image of <math>\varphi</math> is [[Module_homomorphism#Terminology|isomorphic]] to the [[quotient module]] <math>M/\ker\varphi</math>. In particular, if <math>\varphi</math> is surjective then <math>N</math> is isomorphic to <math>M/\ker\varphi</math>. ===Theorem B (modules)=== Let <math>M</math> be a module, and let <math>S</math> and <math>T</math> be submodules of <math>M</math>. Then: # The sum <math>S+T=\{s+t\mid s\in S,t\in T\}</math> is a submodule of <math>M</math>, # The intersection <math>S\cap T</math> is a submodule of <math>M</math>, and # The quotient modules <math>(S+T)/T</math> and <math>S/(S\cap T)</math> are isomorphic. ===Theorem C (modules) === Let ''M'' be a module, ''T'' a submodule of ''M''. # If <math>S</math> is a submodule of <math>M</math> such that <math>T \subseteq S \subseteq M</math>, then <math>S/T</math> is a submodule of <math>M/T</math>. # Every submodule of <math>M/T</math> is of the form <math>S/T</math> for some submodule <math>S</math> of <math>M</math> such that <math>T \subseteq S \subseteq M</math>. # If <math>S</math> is a submodule of <math>M</math> such that <math>T \subseteq S \subseteq M</math>, then the quotient module <math>(M/T)/(S/T)</math> is isomorphic to <math>M/S</math>. <!-- We also need to mention the isomorphism theorems for topological vector spaces, Banach algebras etc. --> ===Theorem D (modules)=== Let <math>M</math> be a module, <math>N</math> a submodule of <math>M</math>. There is a bijection between the submodules of <math>M</math> that contain <math>N</math> and the submodules of <math>M/N</math>. The correspondence is given by <math>A\leftrightarrow A/N</math> for all <math>A\supseteq N</math>. This correspondence commutes with the processes of taking sums and intersections (i.e., is a [[lattice isomorphism]] between the lattice of submodules of <math>M/N</math> and the lattice of submodules of <math>M</math> that contain <math>N</math>).<ref>Dummit and Foote (2004), p. 349</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)