Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Joint probability distribution
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Covariance === {{Main|Covariance}} When two or more random variables are defined on a probability space, it is useful to describe how they vary together; that is, it is useful to measure the relationship between the variables. A common measure of the relationship between two random variables is the covariance. Covariance is a measure of linear relationship between the random variables. If the relationship between the random variables is nonlinear, the covariance might not be sensitive to the relationship, which means, it does not relate the correlation between two variables. The covariance between the random variables <math>X</math> and <math>Y</math> is<ref>{{Cite book|title=Applied statistics and probability for engineers|last=Montgomery, Douglas C.|others=Runger, George C.|isbn=978-1-118-53971-2|edition=Sixth|location=Hoboken, NJ|oclc=861273897|date = 19 November 2013}}</ref> :<math>\operatorname{cov}(X,Y) = \sigma_{XY}=E[(X-\mu_x)(Y-\mu_y)]=E(XY)-\mu_x\mu_y.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)