Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Laser pointer
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Infrared hazards of DPSS laser pointers=== {{More citations needed|date=December 2018}} Lasers classified as ''pointers'' are intended to have outputs less than 5 mW total power ([[Laser safety|Class 3R]]). At such power levels, an IR filter for a DPSS laser may not be required as the infrared (IR) output is relatively low and the brightness of the visible wavelength of the laser will cause the eye to react (blink reflex). However, higher-powered (> 5 mW) [[DPSS]]-type laser pointers have recently become available, usually through sources that do not follow laser safety [[Laser safety#Regulations|regulations]] for laser packaging and labeling. These higher-powered lasers are often packaged in the same pointer-style housings as regular laser pointers, and usually lack the IR filters found in professional high-powered DPSS lasers, because of costs and additional efforts needed to accommodate them.<ref>{{Cite journal|last1=Galang|first1=Jemellie|last2=Restelli|first2=Alessandro|last3=Hagley|first3=Edward W.|last4=Clark|first4=Charles W.|date=2010-08-02|title=A Green Laser Pointer Hazard|journal=NIST |arxiv=1008.1452|url=https://www.nist.gov/publications/green-laser-pointer-hazard|language=en}}</ref> Though the IR from a DPSS laser is less collimated, the typical [[neodymium laser|neodymium-doped crystals]] in such lasers do produce a true IR laser beam. The eye will usually react to the higher-powered visible light; however, in higher power DPSS lasers the IR laser output can be significant. What poses a special hazard for this unfiltered IR output is its presence in conjunction with laser safety goggles designed to only block the visible wavelengths of the laser. Red goggles, for example, will block most green light from entering the eyes, but will pass IR light. The reduced light behind the goggles may also cause the pupils to dilate, increasing the hazard to the invisible IR light. Dual-frequency so-called YAG laser eyewear is significantly more expensive than single frequency laser eyewear, and is often not supplied with unfiltered DPSS pointer style lasers, which output 1064 nm IR laser light as well. These potentially hazardous lasers produce little or no visible beam when shone through the eyewear supplied with them, yet their IR-laser output can still be easily seen when viewed with an IR-sensitive video camera. In addition to the safety hazards of unfiltered IR from DPSS lasers, the IR component may be inclusive of total output figures in some laser pointers. Though green (532 nm) lasers are most common, IR filtering problems may also exist in other DPSS lasers, such as DPSS red (671 nm), yellow (589 nm) and blue (473 nm) lasers. These DPSS laser wavelengths are usually more exotic, more expensive, and generally manufactured with higher quality components, including filters, unless they are put into laser pointer style pocket-pen packages. Most red (635 nm, 660 nm), violet (405 nm) and darker blue (445 nm) lasers are generally built using dedicated laser diodes at the output frequency, not as DPSS lasers. These diode-based visible lasers do not produce IR light.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)