Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Linear elasticity
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===== Boussinesq–Cerruti solution - point force at the origin of an infinite isotropic half-space ===== Another useful solution is that of a point force acting on the surface of an infinite half-space.<ref name="tribonet" /> It was derived by Boussinesq<ref>{{cite book |title=Application des potentiels à l'étude de l'équilibre et du mouvement des solides élastiques |last=Boussinesq |first=Joseph |author-link=Joseph Boussinesq |year=1885 |publisher=Gauthier-Villars |location=Paris, France |url=http://name.umdl.umich.edu/ABV5032.0001.001 |archive-date=2024-09-03 |access-date=2007-12-19 |archive-url=https://web.archive.org/web/20240903234441/https://quod.lib.umich.edu/cgi/t/text/text-idx?c=umhistmath;idno=ABV5032.0001.001 |url-status=live }}</ref> for the normal force and Cerruti for the tangential force and a derivation is given in Landau & Lifshitz.<ref name="LL" />{{rp|§8}} In this case, the solution is again written as a Green's tensor which goes to zero at infinity, and the component of the stress tensor normal to the surface vanishes. This solution may be written in Cartesian coordinates as [recall: <math>a=(1-2\nu)</math> and <math>b=2(1-\nu)</math>, <math>\nu</math> = Poisson's ratio]: <math display="block">G_{ik} = \frac{1}{4\pi\mu r} \begin{bmatrix} \frac{b r + z}{r + z} + \frac{(2 r (\nu r + z) + z^2) x^2}{r^2 (r + z)^2} & \frac{(2 r (\nu r + z) + z^2) x y}{r^2 (r + z)^2} & \frac{x z}{r^2} - \frac{a x}{r + z} \\ \frac{(2 r (\nu r + z) + z^2) y x}{r^2 (r + z)^2} & \frac{b r + z}{r + z} + \frac{(2 r (\nu r + z) + z^2) y^2}{r^2 (r + z)^2} & \frac{y z}{r^2} - \frac{a y}{r + z} \\ \frac{z x}{r^2} + \frac{a x}{r + z} & \frac{z y}{r^2} + \frac{a y}{r + z} & b + \frac{z^2}{r^2} \end{bmatrix} </math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)