Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
List of theorems
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Group theory and generalizations== *[[AlperinâBrauerâGorenstein theorem]] (''[[finite groups]]'') *[[Gromov's_theorem_on_groups_of_polynomial_growth#Growth_rates_of_nilpotent_groups|Bass-Guirvarc'h formula]] (''[[group theory]]'') *[[BassâSerre_theory#Fundamental_theorem_of_BassâSerre_theory|Bass-Serre theorem]] (''[[group theory]]'') *[[BorelâBottâWeil theorem]] (''[[representation theory]]'') *[[BorelâWeil theorem]] (''[[representation theory]]'') *[[BrauerâNesbitt theorem]] (''[[representation theory of finite groups]]'') *[[BrauerâSuzuki theorem]] (''[[finite groups]]'') *[[BrauerâSuzukiâWall theorem]] (''[[group theory]]'') *[[Brauer's main theorem|Brauer's theorem]] (''[[number theory]]'') *[[Brauer's theorem on induced characters]] (''[[representation theory of finite groups]]'') *[[Burnside's theorem]] (''[[group theory]]'') *[[CartanâDieudonnĂŠ theorem]] (''[[group theory]]'') *[[Cauchy's theorem (group theory)|Cauchy's theorem]] (''[[finite groups]]'') *[[Cayley's theorem]] (''[[group theory]]'') *[[ChevalleyâShephardâTodd theorem]] (''[[finite group]]'') *[[Classification of finite simple groups]] (''[[group theory]]'') *[[FeitâThompson theorem]] (''[[finite group]]s'') *[[Fitting's theorem]] (''[[group theory]]'') *[[Preissmann's_theorem#Flat_torus_theorem|Flat torus theorem]] (''[[geometric group theory]]'') *[[Focal subgroup theorem]] (''[[abstract algebra]]'') *[[Frobenius determinant theorem]] (''[[group theory]]'') *[[Frobenius reciprocity theorem]] (''[[group representation]]s'') *[[Frucht's theorem]] (''[[graph theory]]'') *[[Great orthogonality theorem]] (''[[group theory]]'') *[[Gromov's theorem on groups of polynomial growth]] (''[[geometric group theory]]'') *[[Grushko theorem]] (''[[group theory]]'') *[[Higman's embedding theorem]] (''[[group theory]]'') *[[Dehn_function#Known_results|Isoperimetric gap]] (''[[geometric group theory]]'', ''[[metric geometry]]'') *[[JordanâHĂślder theorem]] (''[[group theory]]'') *[[JordanâSchur theorem]] (''[[group theory]]'') *[[Jordan's theorem (multiply transitive groups)]] (''[[group theory]]'') *[[KrullâSchmidt theorem]] (''[[group theory]]'') *[[Kurosh subgroup theorem]] (''[[group theory]]'') *[[L-balance theorem]] (''[[finite groups]]'') *[[Lagrange's theorem (group theory)|Lagrange's theorem]] (''[[group theory]]'') *[[LieâKolchin theorem]] (''[[algebraic group]]s'', ''[[representation theory]]'') *[[Maschke's theorem]] (''[[group representation]]s'') *[[Moufang_loop#Associativity|Moufang's theorem]] (''[[loop theory]]'') *[[NielsenâSchreier theorem]] (''[[free group]]s'') *[[Orbit-stabilizer theorem]] (''[[group theory]]'') *[[Schreier refinement theorem]] (''[[group theory]]'') *[[Schur's lemma]] (''[[representation theory]]'') *[[SchurâZassenhaus theorem]] (''[[group theory]]'') *[[Zlil Sela#Mathematical contributions|Sela's theorem]] (''[[hyperbolic group]]s'') *[[Stallings theorem about ends of groups]] (''[[group theory]]'') *[[Superrigidity theorem]] (''[[algebraic groups]]'') *[[Ĺ varcâMilnor_lemma|Ĺ varc-Milnor lemma]] (''[[geometric group theory]]'') *[[Sylow theorems]] (''[[group theory]]'') *[[Thompson transitivity theorem]] (''[[finite groups]]'') *[[Thompson uniqueness theorem]] (''[[finite groups]]'') *[[Tits alternative]] (''[[geometric group theory]]'') *[[Trichotomy theorem]] (''[[finite groups]]'') *[[Walter theorem]] (''[[finite groups]]'') *[[Z* theorem]] (''[[finite groups]]'') *[[ZJ theorem]] (''[[finite groups]]'')
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)