Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Logarithm
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Existence=== Let {{mvar|b}} be a positive real number not equal to 1 and let {{math|1=''f''(''x'') = {{mvar|b}}<sup> ''x''</sup>}}. It is a standard result in real analysis that any continuous strictly monotonic function is bijective between its domain and range. This fact follows from the [[intermediate value theorem]].<ref name="LangIII.3">{{Citation|last1=Lang|first1=Serge|title=Undergraduate analysis|year=1997|series=[[Undergraduate Texts in Mathematics]]|edition=2nd|location=Berlin, New York|publisher=[[Springer-Verlag]]|doi=10.1007/978-1-4757-2698-5|isbn=978-0-387-94841-6|mr=1476913|author1-link=Serge Lang}}, section III.3</ref> Now, {{mvar|f}} is [[monotonic function|strictly increasing]] (for {{math|''b'' > 1}}), or strictly decreasing (for {{math|0 < {{mvar|b}} < 1}}),<ref name="LangIV.2">{{Harvard citations|last1=Lang|year=1997|nb=yes|loc=section IV.2}}</ref> is continuous, has domain <math>\R</math>, and has range <math>\R_{> 0}</math>. Therefore, {{Mvar|f}} is a bijection from <math>\R</math> to <math>\R_{>0}</math>. In other words, for each positive real number {{Mvar|y}}, there is exactly one real number {{Mvar|x}} such that <math>b^x = y</math>. We let <math>\log_b\colon\R_{>0}\to\R</math> denote the inverse of {{Mvar|f}}. That is, {{math|log<sub>''b''</sub> ''y''}} is the unique real number {{mvar|x}} such that <math>b^x = y</math>. This function is called the base-{{Mvar|b}} ''logarithm function'' or ''logarithmic function'' (or just ''logarithm'').
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)