Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Mathematical induction
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Equivalence with ordinary induction==== Complete induction is equivalent to ordinary mathematical induction as described above, in the sense that a proof by one method can be transformed into a proof by the other. Suppose there is a proof of <math>P(n)</math> by complete induction. Then, this proof can be transformed into an ordinary induction proof by assuming a stronger inductive hypothesis. Let <math>Q(n)</math> be the statement "<math>P(m)</math> holds for all <math>m</math> such that <math>0\leq m \leq n</math>"βthis becomes the inductive hypothesis for ordinary induction. We can then show <math>Q(0)</math> and <math>Q(n + 1)</math> for <math>n \in \mathbb N</math> assuming only <math>Q(n)</math> and show that <math>Q(n)</math> implies <math>P(n)</math>.<ref>{{cite web |title=Proof:Strong induction is equivalent to weak induction |url=https://courses.cs.cornell.edu/cs2800/wiki/index.php/Proof:Strong_induction_is_equivalent_to_weak_induction |website=[[Cornell University]] |access-date=4 May 2023}}</ref> If, on the other hand, <math>P(n)</math> had been proven by ordinary induction, the proof would already effectively be one by complete induction: <math>P(0)</math> is proved in the base case, using no assumptions, and <math>P(n+1)</math> is proved in the induction step, in which one may assume all earlier cases but need only use the case <math>P(n)</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)