Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Mayer–Vietoris sequence
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Naturality=== The homology groups are [[Natural (category theory)|natural]] in the sense that if <math>f:X_1 \to X_2</math> is a [[Continuous function (topology)|continuous]] map, then there is a canonical [[pushforward (homology)|pushforward]] map of homology groups <math>f_*: H_k(X_1) \to H_k(X_2)</math> such that the composition of pushforwards is the pushforward of a composition: that is, <math>(g\circ h)_* = g_*\circ h_*.</math> The Mayer–Vietoris sequence is also natural in the sense that if :<math>\begin{matrix} X_1 = A_1 \cup B_1 \\ X_2 = A_2 \cup B_2 \end{matrix} \qquad \text{and} \qquad \begin{matrix} f(A_1) \subset A_2 \\f(B_1) \subset B_2\end{matrix}</math>, then the connecting morphism of the Mayer–Vietoris sequence, <math>\partial_*,</math> commutes with <math>f_*</math>.<ref>{{harvnb|Massey|1984|p=208}}</ref> That is, the following diagram [[Commutative diagram|commutes]]<ref>{{harvnb|Eilenberg|Steenrod|1952|loc=Theorem 15.4}}</ref> (the horizontal maps are the usual ones): :<math>\begin{matrix} \cdots & H_{n+1}(X_1) & \longrightarrow & H_n(A_1\cap B_1) & \longrightarrow & H_n(A_1)\oplus H_n(B_1) & \longrightarrow & H_n(X_1) & \longrightarrow &H_{n-1}(A_1\cap B_1) & \longrightarrow & \cdots\\ & f_* \Bigg\downarrow & & f_* \Bigg\downarrow & & f_* \Bigg\downarrow & & f_* \Bigg\downarrow & & f_* \Bigg\downarrow\\ \cdots & H_{n+1}(X_2) & \longrightarrow & H_n(A_2\cap B_2) & \longrightarrow & H_n(A_2)\oplus H_n(B_2) & \longrightarrow & H_n(X_2) & \longrightarrow &H_{n-1}(A_2\cap B_2) & \longrightarrow & \cdots\\ \end{matrix}</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)