Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Mellin transform
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Problems with Laplacian in cylindrical coordinate system== In the Laplacian in cylindrical coordinates in a generic dimension (orthogonal coordinates with one angle and one radius, and the remaining lengths) there is always a term: <math display="block">\frac{1}{r} \frac{\partial}{\partial r} \left( r \frac{\partial f}{\partial r} \right) = f_{rr} + \frac{f_r}{r}</math> For example, in 2-D polar coordinates the Laplacian is: <math display="block">\nabla^2 f = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial f}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 f}{\partial \theta^2}</math> and in 3-D cylindrical coordinates the Laplacian is, <math display="block"> \nabla^2 f = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial f}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 f}{\partial \varphi^2} + \frac{\partial^2 f}{\partial z^2}.</math> This term can be treated with the Mellin transform,<ref>Bhimsen, Shivamoggi, Chapter 6: The Mellin Transform, par. 4.3: Distribution of a Potential in a Wedge, pp. 267β8</ref> since: <math display="block">\mathcal M \left(r^2 f_{rr} + r f_r, r \to s \right) = s^2 \mathcal M \left(f, r \to s \right) = s^2 F</math> For example, the 2-D [[Laplace equation]] in polar coordinates is the PDE in two variables: <math display="block"> r^2 f_{rr} + r f_r + f_{\theta \theta} = 0</math> and by multiplication: <math display="block">\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial f}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 f}{\partial \theta^2} = 0</math> with a Mellin transform on radius becomes the simple [[harmonic oscillator]]: <math display="block"> F_{\theta \theta} + s^2 F = 0</math> with general solution: <math display="block"> F (s, \theta) = C_1(s) \cos (s\theta) + C_2(s) \sin (s \theta)</math> Now let's impose for example some simple wedge [[boundary conditions]] to the original Laplace equation: <math display="block"> f(r,-\theta_0) = a(r), \quad f(r,\theta_0) = b(r) </math> these are particularly simple for Mellin transform, becoming: <math display="block"> F(s,-\theta_0) = A(s), \quad F(s,\theta_0) = B(s) </math> These conditions imposed to the solution particularize it to: <math display="block"> F (s, \theta) = A(s) \frac {\sin(s (\theta_0 - \theta))}{\sin (2 \theta_0 s)}+ B(s) \frac {\sin(s (\theta_0 + \theta))}{\sin (2 \theta_0 s)}</math> Now by the convolution theorem for Mellin transform, the solution in the Mellin domain can be inverted: <math display="block"> f(r, \theta) = \frac{r^m \cos (m \theta)}{2 \theta_0} \int_0^\infty \left ( \frac{a(x)}{x^{2m} + 2r^m x^m \sin(m \theta) + r^{2m}} + \frac{b(x)}{x^{2m} - 2r^m x^m \sin(m \theta) + r^{2m}} \right ) x^{m-1} \, dx </math> where the following inverse transform relation was employed: <math display="block">\mathcal M^{-1} \left( \frac {\sin (s \varphi)}{\sin (2 \theta_0 s)}; s \to r \right) = \frac 1 {2 \theta_0} \frac{r^m \sin (m \varphi)}{1+2r^m \cos(m \varphi) + r^{2m}}</math> where <math>m= \frac \pi {2 \theta_0}</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)