Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Multiplication algorithm
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====History of quarter square multiplication==== In prehistoric time, quarter square multiplication involved [[Floor and ceiling functions|floor function]]; that some sources<ref>{{citation |title= Quarter Tables Revisited: Earlier Tables, Division of Labor in Table Construction, and Later Implementations in Analog Computers |last=McFarland |first=David|url=http://escholarship.org/uc/item/5n31064n |page=1 |year=2007}}</ref><ref>{{cite book| title=Mathematics in Ancient Iraq: A Social History |last=Robson |first=Eleanor |page=227 |year=2008 |publisher=Princeton University Press |isbn= 978-0691201405 }}</ref> attribute to [[Babylonian mathematics]] (2000β1600 BC). Antoine Voisin published a table of quarter squares from 1 to 1000 in 1817 as an aid in multiplication. A larger table of quarter squares from 1 to 100000 was published by Samuel Laundy in 1856,<ref>{{Citation |title=Reviews |journal=The Civil Engineer and Architect's Journal |year=1857 |pages=54β55 |url=https://books.google.com/books?id=gcNAAAAAcAAJ&pg=PA54 |postscript=.}}</ref> and a table from 1 to 200000 by Joseph Blater in 1888.<ref>{{Citation|title=Multiplying with quarter squares |first=Neville |last=Holmes| journal=The Mathematical Gazette |volume=87 |issue=509 |year=2003 |pages=296β299 |jstor=3621048|postscript=.|doi=10.1017/S0025557200172778 |s2cid=125040256 }}</ref> Quarter square multipliers were used in [[analog computer]]s to form an [[analog signal]] that was the product of two analog input signals. In this application, the sum and difference of two input [[voltage]]s are formed using [[operational amplifier]]s. The square of each of these is approximated using [[piecewise linear function|piecewise linear]] circuits. Finally the difference of the two squares is formed and scaled by a factor of one fourth using yet another operational amplifier. In 1980, Everett L. Johnson proposed using the quarter square method in a [[Digital data|digital]] multiplier.<ref name=eljohnson>{{Citation |last = Everett L. |first = Johnson |date = March 1980 |title = A Digital Quarter Square Multiplier |periodical = IEEE Transactions on Computers |location = Washington, DC, USA |publisher = IEEE Computer Society |volume = C-29 |issue = 3 |pages = 258β261 |issn = 0018-9340 |doi =10.1109/TC.1980.1675558 |s2cid = 24813486 }}</ref> To form the product of two 8-bit integers, for example, the digital device forms the sum and difference, looks both quantities up in a table of squares, takes the difference of the results, and divides by four by shifting two bits to the right. For 8-bit integers the table of quarter squares will have 2<sup>9</sup>−1=511 entries (one entry for the full range 0..510 of possible sums, the differences using only the first 256 entries in range 0..255) or 2<sup>9</sup>−1=511 entries (using for negative differences the technique of 2-complements and 9-bit masking, which avoids testing the sign of differences), each entry being 16-bit wide (the entry values are from (0Β²/4)=0 to (510Β²/4)=65025). The quarter square multiplier technique has benefited 8-bit systems that do not have any support for a hardware multiplier. Charles Putney implemented this for the [[MOS Technology 6502|6502]].<ref name=cputney>{{Cite journal |last = Putney |first = Charles |title = Fastest 6502 Multiplication Yet|date = March 1986 |journal = Apple Assembly Line |volume = 6 |issue = 6 |url = http://www.txbobsc.com/aal/1986/aal8603.html#a5}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)