Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Natural logarithm
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Continued fractions== While no simple [[continued fraction]]s are available, several [[generalized continued fraction]]s exist, including: <math display="block"> \begin{align} \ln(1+x) & =\frac{x^1}{1}-\frac{x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}+\frac{x^5}{5}-\cdots \\[5pt] & = \cfrac{x}{1-0x+\cfrac{1^2x}{2-1x+\cfrac{2^2x}{3-2x+\cfrac{3^2x}{4-3x+\cfrac{4^2x}{5-4x+\ddots}}}}} \end{align} </math> <math display="block"> \begin{align} \ln\left(1+\frac{x}{y}\right) & = \cfrac{x} {y+\cfrac{1x} {2+\cfrac{1x} {3y+\cfrac{2x} {2+\cfrac{2x} {5y+\cfrac{3x} {2+\ddots}}}}}} \\[5pt] & = \cfrac{2x} {2y+x-\cfrac{(1x)^2} {3(2y+x)-\cfrac{(2x)^2} {5(2y+x)-\cfrac{(3x)^2} {7(2y+x)-\ddots}}}} \end{align} </math> These continued fractions—particularly the last—converge rapidly for values close to 1. However, the natural logarithms of much larger numbers can easily be computed, by repeatedly adding those of smaller numbers, with similarly rapid convergence. For example, since 2 = 1.25<sup>3</sup> × 1.024, the [[natural logarithm of 2]] can be computed as: <math display="block"> \begin{align} \ln 2 & = 3 \ln\left(1+\frac{1}{4}\right) + \ln\left(1+\frac{3}{125}\right) \\[8pt] & = \cfrac{6} {9-\cfrac{1^2} {27-\cfrac{2^2} {45-\cfrac{3^2} {63-\ddots}}}} + \cfrac{6} {253-\cfrac{3^2} {759-\cfrac{6^2} {1265-\cfrac{9^2} {1771-\ddots}}}}. \end{align} </math> Furthermore, since 10 = 1.25<sup>10</sup> × 1.024<sup>3</sup>, even the natural logarithm of 10 can be computed similarly as: <math display="block"> \begin{align} \ln 10 & = 10 \ln\left(1+\frac{1}{4}\right) + 3\ln\left(1+\frac{3}{125}\right) \\[10pt] & = \cfrac{20} {9-\cfrac{1^2} {27-\cfrac{2^2} {45-\cfrac{3^2} {63-\ddots}}}} + \cfrac{18} {253-\cfrac{3^2} {759-\cfrac{6^2} {1265-\cfrac{9^2} {1771-\ddots}}}}. \end{align} </math> The reciprocal of the natural logarithm can be also written in this way: <math display="block">\frac {1}{\ln(x)} = \frac {2x}{x^2-1}\sqrt{\frac {1}{2}+\frac {x^2+1}{4x}}\sqrt{\frac {1}{2}+\frac {1}{2}\sqrt{\frac {1}{2}+\frac {x^2+1}{4x}}}\ldots</math> For example: <math display="block">\frac {1}{\ln(2)} = \frac {4}{3}\sqrt{\frac {1}{2} + \frac {5}{8}} \sqrt{\frac {1}{2} + \frac {1}{2} \sqrt{\frac {1}{2} +\frac {5}{8}}} \ldots</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)