Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Natural transformation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Operations with natural transformations == [[File:Natural transformation composition.svg|thumb|Horizontal and vertical composition of natural transformations]] === Vertical composition === If <math>\eta : F \Rightarrow G</math> and <math>\epsilon: G \Rightarrow H</math> are natural transformations between functors <math>F, G, H: C \to D</math>, then we can compose them to get a natural transformation <math>\epsilon \circ \eta: F \Rightarrow H</math>. This is done component-wise: :<math>(\epsilon \circ \eta)_X = \epsilon_X \circ \eta_X</math>. [[Image:Vertical composition of natural transformations.svg|center|300px]] This vertical composition of natural transformations is [[associative]] and has an identity, and allows one to consider the collection of all functors <math>C \to D</math> itself as a category (see below under [[#Functor categories|Functor categories]]). The identity natural transformation <math>\mathrm{id}_F</math> on functor <math>F</math> has components <math>(\mathrm{id}_F)_X = \mathrm{id}_{F(X)}</math>.<ref>{{cite web | url=https://ncatlab.org/nlab/show/identity+natural+transformation | title=Identity natural transformation in nLab }}</ref> :For <math>\eta : F \Rightarrow G</math>, <math>\mathrm{id}_G \circ \eta = \eta = \eta \circ \mathrm{id}_F</math>. === Horizontal composition === If <math>\eta: F \Rightarrow G</math> is a natural transformation between functors <math>F, G: C \to D</math> and <math>\epsilon: J \Rightarrow K</math> is a natural transformation between functors <math>J, K: D \to E</math>, then the composition of functors allows a composition of natural transformations <math>\epsilon * \eta: J \circ F \Rightarrow K \circ G</math> with components :<math>(\epsilon * \eta)_X = \epsilon_{G(X)} \circ J(\eta_X) = K(\eta_X) \circ \epsilon_{F(X)}</math>. By using whiskering (see below), we can write :<math>(\epsilon * \eta)_X = (\epsilon G)_X \circ (J \eta)_X = (K \eta)_X \circ (\epsilon F)_X</math>, hence :<math>\epsilon * \eta = \epsilon G \circ J \eta = K \eta \circ \epsilon F</math>. [[Image:Horizontal composition of natural transformations.svg|center|400px|alt=This is a commutative diagram generated using LaTeX. The left hand square shows the result of applying J to the commutative diagram for eta:F to G on f:X to Y. The right had side shows the commutative diagram for epsilon:J to K applied to G(f):G(X) to G(Y).]] This horizontal composition of natural transformations is also associative with identity. This identity is the identity natural transformation on the [[identity functor]], i.e., the natural transformation that associate to each object its [[identity morphism]]: for object <math>X</math> in category <math>C</math>, <math>(\mathrm{id}_{\mathrm{id}_C})_X = \mathrm{id}_{\mathrm{id}_C(X)} = \mathrm{id}_X</math>. :For <math>\eta: F \Rightarrow G</math> with <math>F, G: C \to D</math>, <math>\mathrm{id}_{\mathrm{id}_D} * \eta = \eta = \eta * \mathrm{id}_{\mathrm{id}_C}</math>. As identity functors <math>\mathrm{id}_C</math> and <math>\mathrm{id}_D</math> are functors, the identity for horizontal composition is also the identity for vertical composition, but not vice versa.<ref>{{cite web | url=https://bartoszmilewski.com/2015/04/07/natural-transformations/ | title=Natural Transformations | date=7 April 2015 }}</ref> === Whiskering === Whiskering is an [[external binary operation]] between a functor and a natural transformation.<ref>{{cite web | url=https://proofwiki.org/wiki/Definition:Whiskering | title=Definition:Whiskering - ProofWiki }}</ref><ref>{{cite web | url=https://ncatlab.org/nlab/show/whiskering | title=Whiskering in nLab }}</ref> If <math>\eta: F \Rightarrow G</math> is a natural transformation between functors <math>F, G: C \to D</math>, and <math>H: D \to E</math> is another functor, then we can form the natural transformation <math>H \eta: H \circ F \Rightarrow H \circ G</math> by defining :<math>(H \eta)_X = H(\eta_X)</math>. If on the other hand <math>K: B \to C</math> is a functor, the natural transformation <math>\eta K: F \circ K \Rightarrow G \circ K</math> is defined by :<math>(\eta K)_X = \eta_{K(X)}</math>. It's also an horizontal composition where one of the natural transformations is the identity natural transformation: :<math>H \eta = \mathrm{id}_H * \eta</math> and <math>\eta K = \eta * \mathrm{id}_K</math>. Note that <math>\mathrm{id}_H</math> (resp. <math>\mathrm{id}_K</math>) is generally not the left (resp. right) identity of horizontal composition <math>*</math> (<math>H \eta \neq \eta</math> and <math>\eta K \neq \eta</math> in general), except if <math>H</math> (resp. <math>K</math>) is the [[identity functor]] of the category <math>D</math> (resp. <math>C</math>). === Interchange law === The two operations are related by an identity which exchanges vertical composition with horizontal composition: if we have four natural transformations <math>\alpha, \alpha', \beta, \beta'</math> as shown on the image to the right, then the following identity holds: :<math> (\beta' \circ \alpha') * (\beta \circ \alpha) = (\beta' * \beta) \circ (\alpha' * \alpha)</math>. Vertical and horizontal compositions are also linked through identity natural transformations: :for <math>F: C \to D</math> and <math>G: D \to E</math>, <math>\mathrm{id}_G * \mathrm{id}_F = \mathrm{id}_{G \circ F}</math>.<ref>https://arxiv.org/pdf/1612.09375v1.pdf, p. 38</ref> As whiskering is horizontal composition with an identity, the interchange law gives immediately the compact formulas of horizontal composition of <math>\eta: F \Rightarrow G</math> and <math>\epsilon: J \Rightarrow K</math> without having to analyze components and the commutative diagram: :<math>\begin{align} \epsilon * \eta & = (\epsilon \circ \mathrm{id}_J) * (\mathrm{id}_G \circ \eta) = (\epsilon * \mathrm{id}_G) \circ (\mathrm{id}_J * \eta) = \epsilon G \circ J \eta \\ & = (\mathrm{id}_K \circ \epsilon) * (\eta \circ \mathrm{id}_F) = (\mathrm{id}_K * \eta) \circ (\epsilon * \mathrm{id}_F) = K \eta \circ \epsilon F \end{align}</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)