Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Neutron source
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===High-energy particle accelerators=== A [[spallation#Production of neutrons at a spallation neutron source|spallation]] source is a high-flux source in which [[proton]]s that have been accelerated to high energies hit a target, prompting emission of neutrons. The world's strongest neutron sources tend to be spallation based as high flux fission reactors have an upper bound of neutrons produced. As of 2022, the most powerful neutron source in the world is the [[Spallation Neutron Source]] in [[Oak Ridge, Tennessee]],<ref>{{cite web |title=SUF Spallation Neutron Source (S... {{!}} U.S. DOE Office of Science (SC) |url=https://science.osti.gov/bes/suf/User-Facilities/Neutron-Scattering-Facilities/SNS#:~:text=The%20Spallation%20Neutron%20Source%20(SNS,a%20power%20of%201%20MW. |website=science.osti.gov |access-date=19 October 2022 |date=29 April 2022}}</ref> with the [[European Spallation Source]] in [[Lund]], Sweden under construction to become the world's strongest intermediate duration pulsed neutron source. [[Subcritical reactor|Subcritical nuclear fission reactors]] are proposed to use spallation neutron sources and can be used both for [[nuclear transmutation]] (e.g. production of [[Isotopes in medicine|medical radionuclides]] or [[synthesis of precious metals]]) and for power generation as the energy required to produce one spallation neutron (~30 MeV at current technology levels) is almost an order of magnitude lower than the energy released by fission (~200 MeV for most fissile [[Actinide|actinides]]). [[Laser-driven neutron sources]] are further another emerging technology that uses ultra-intense laser pulses to produce neutrons through secondary nuclear reactions. When high-power lasers interact with dense targets, they generate high-energy particles such as protons or deuterons, which can then collide with a secondary material, inducing neutron emission. These sources are compact compared to traditional spallation or reactor-based facilities and provide unique capabilities, including ultra-short neutron bursts and high brilliance.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)