Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Normal distribution
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Moments === {{See also|List of integrals of Gaussian functions}} The plain and absolute [[moment (mathematics)|moments]] of a variable {{tmath|X}} are the expected values of <math display=inline>X^p</math> and <math display=inline>|X|^p</math>, respectively. If the expected value {{tmath|\mu}} of {{tmath|X}} is zero, these parameters are called ''central moments;'' otherwise, these parameters are called ''non-central moments.'' Usually we are interested only in moments with integer order {{tmath|p}}. If {{tmath|X}} has a normal distribution, the non-central moments exist and are finite for any {{tmath|p}} whose real part is greater than β1. For any non-negative integer {{tmath|p}}, the plain central moments are:<ref>{{cite book|last1=Papoulis|first1=Athanasios|title=Probability, Random Variables and Stochastic Processes|page=148|edition=4th}}</ref> <math display=block> \operatorname{E}\left[(X-\mu)^p\right] = \begin{cases} 0 & \text{if }p\text{ is odd,} \\ \sigma^p (p-1)!! & \text{if }p\text{ is even.} \end{cases} </math> Here <math display=inline>n!!</math> denotes the [[double factorial]], that is, the product of all numbers from {{tmath|n}} to 1 that have the same parity as <math display=inline>n.</math> The central absolute moments coincide with plain moments for all even orders, but are nonzero for odd orders. For any non-negative integer <math display=inline>p,</math> <math display=block>\begin{align} \operatorname{E}\left[|X - \mu|^p\right] &= \sigma^p (p-1)!! \cdot \begin{cases} \sqrt{\frac{2}{\pi}} & \text{if }p\text{ is odd} \\ 1 & \text{if }p\text{ is even} \end{cases} \\ &= \sigma^p \cdot \frac{2^{p/2}\Gamma\left(\frac{p+1} 2 \right)}{\sqrt\pi}. \end{align}</math> The last formula is valid also for any non-integer <math display=inline>p>-1.</math> When the mean <math display=inline>\mu \ne 0,</math> the plain and absolute moments can be expressed in terms of [[confluent hypergeometric function]]s <math display=inline>{}_1F_1</math> and <math display=inline>U.</math><ref>{{cite arXiv|last1=Winkelbauer|first1=Andreas|title=Moments and Absolute Moments of the Normal Distribution |date= 2012|class=math.ST |eprint=1209.4340}}</ref> <math display="block">\begin{align} \operatorname{E}\left[X^p\right] &= \sigma^p\cdot {\left(-i\sqrt 2\right)}^p \, U{\left(-\frac{p}{2}, \frac{1}{2}, -\frac{\mu^2}{2\sigma^2}\right)}, \\ \operatorname{E}\left[|X|^p \right] &= \sigma^p \cdot 2^{p/2} \frac {\Gamma{\left(\frac{1+p} 2\right)}}{\sqrt\pi} \, {}_1F_1{\left( -\frac{p}{2}, \frac{1}{2}, -\frac{\mu^2}{2\sigma^2} \right)}. \end{align}</math> These expressions remain valid even if {{tmath|p}} is not an integer. See also [[Hermite polynomials#"Negative variance"|generalized Hermite polynomials]]. {| class="wikitable" style="margin: auto;" |- ! Order !! Non-central moment, <math>\operatorname{E}\left[X^p\right]</math> !! Central moment, <math>\operatorname{E}\left[(X-\mu)^p\right]</math> |- | 1 | {{tmath|\mu}} | {{tmath|0}} |- | 2 | <math display=inline>\mu^2+\sigma^2</math> | <math display=inline>\sigma^2</math> |- | 3 | <math display=inline>\mu^3+3\mu\sigma^2</math> | {{tmath|0}} |- | 4 | <math display=inline>\mu^4+6\mu^2\sigma^2+3\sigma^4</math> | <math display=inline>3\sigma^4</math> |- | 5 | <math display=inline>\mu^5+10\mu^3\sigma^2+15\mu\sigma^4</math> | {{tmath|0}} |- | 6 | <math display=inline>\mu^6+15\mu^4\sigma^2+45\mu^2\sigma^4+15\sigma^6</math> | <math display=inline>15\sigma^6</math> |- | 7 | <math display=inline>\mu^7+21\mu^5\sigma^2+105\mu^3\sigma^4+105\mu\sigma^6</math> | {{tmath|0}} |- | 8 | <math display=inline>\mu^8+28\mu^6\sigma^2+210\mu^4\sigma^4+420\mu^2\sigma^6+105\sigma^8</math> | <math display=inline>105\sigma^8</math> |} The expectation of {{tmath|X}} conditioned on the event that {{tmath|X}} lies in an interval <math display=inline>[a,b]</math> is given by <math display=block>\operatorname{E}\left[X \mid a<X<b \right] = \mu - \sigma^2\frac{f(b)-f(a)}{F(b)-F(a)}\,,</math> where {{tmath|f}} and {{tmath|F}} respectively are the density and the cumulative distribution function of {{tmath|X}}. For <math display=inline>b=\infty</math> this is known as the [[inverse Mills ratio]]. Note that above, density {{tmath|f}} of {{tmath|X}} is used instead of standard normal density as in inverse Mills ratio, so here we have <math display=inline>\sigma^2</math> instead of {{tmath|\sigma}}.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)