Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
P versus NP problem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Logical characterizations== The P = NP problem can be restated as certain classes of logical statements, as a result of work in [[descriptive complexity]]. Consider all languages of finite structures with a fixed [[signature (logic)|signature]] including a [[linear order]] relation. Then, all such languages in P are expressible in [[first-order logic]] with the addition of a suitable least [[fixed-point combinator]]. Recursive functions can be defined with this and the order relation. As long as the signature contains at least one predicate or function in addition to the distinguished order relation, so that the amount of space taken to store such finite structures is actually polynomial in the number of elements in the structure, this precisely characterizes P. Similarly, NP is the set of languages expressible in existential [[second-order logic]]—that is, second-order logic restricted to exclude [[universal quantification]] over relations, functions, and subsets. The languages in the [[polynomial hierarchy]], [[PH (complexity)|PH]], correspond to all of second-order logic. Thus, the question "is P a proper subset of NP" can be reformulated as "is existential second-order logic able to describe languages (of finite linearly ordered structures with nontrivial signature) that first-order logic with least fixed point cannot?".<ref>Elvira Mayordomo. [http://www.unizar.es/acz/05Publicaciones/Monografias/MonografiasPublicadas/Monografia26/057Mayordomo.pdf "P versus NP"] {{webarchive|url=https://web.archive.org/web/20120216154228/http://www.unizar.es/acz/05Publicaciones/Monografias/MonografiasPublicadas/Monografia26/057Mayordomo.pdf |date=16 February 2012 }} ''Monografías de la Real Academia de Ciencias de Zaragoza'' 26: 57–68 (2004).</ref> The word "existential" can even be dropped from the previous characterization, since P = NP if and only if P = PH (as the former would establish that NP = co-NP, which in turn implies that NP = PH).
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)