Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Probability density function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Scalar to scalar=== Let <math> g: \Reals \to \Reals</math> be a [[monotonic function]], then the resulting density function is<ref>{{cite web |last1=Siegrist |first1=Kyle |title=Transformations of Random Variables |date=5 May 2020 |url=https://stats.libretexts.org/Bookshelves/Probability_Theory/Probability_Mathematical_Statistics_and_Stochastic_Processes_%28Siegrist%29/03%3A_Distributions/3.07%3A_Transformations_of_Random_Variables#The_Change_of_Variables_Formula |publisher=LibreTexts Statistics |access-date=22 December 2023}}</ref> <math display="block">f_Y(y) = f_X\big(g^{-1}(y)\big) \left| \frac{d}{dy} \big(g^{-1}(y)\big) \right|.</math> Here {{math|''g''<sup>β1</sup>}} denotes the [[inverse function]]. This follows from the fact that the probability contained in a differential area must be invariant under change of variables. That is, <math display="block">\left| f_Y(y)\, dy \right| = \left| f_X(x)\, dx \right|,</math> or <math display="block">f_Y(y) = \left| \frac{dx}{dy} \right| f_X(x) = \left| \frac{d}{dy} (x) \right| f_X(x) = \left| \frac{d}{dy} \big(g^{-1}(y)\big) \right| f_X\big(g^{-1}(y)\big) = {\left|\left(g^{-1}\right)'(y)\right|} \cdot f_X\big(g^{-1}(y)\big) .</math> For functions that are not monotonic, the probability density function for {{mvar|y}} is <math display="block">\sum_{k=1}^{n(y)} \left| \frac{d}{dy} g^{-1}_{k}(y) \right| \cdot f_X\big(g^{-1}_{k}(y)\big),</math> where {{math|''n''(''y'')}} is the number of solutions in {{mvar|x}} for the equation <math>g(x) = y</math>, and <math>g_k^{-1}(y)</math> are these solutions.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)