Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Projection (linear algebra)
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=====Formulas===== A simple case occurs when the orthogonal projection is onto a line. If <math>\mathbf u</math> is a [[unit vector]] on the line, then the projection is given by the [[outer product]] <math display="block"> P_\mathbf{u} = \mathbf u \mathbf u^\mathsf{T}.</math> (If <math>\mathbf u</math> is complex-valued, the transpose in the above equation is replaced by a Hermitian transpose). This operator leaves '''u''' invariant, and it annihilates all vectors orthogonal to <math>\mathbf u</math>, proving that it is indeed the orthogonal projection onto the line containing '''u'''.<ref>Meyer, p. 431</ref> A simple way to see this is to consider an arbitrary vector <math>\mathbf x</math> as the sum of a component on the line (i.e. the projected vector we seek) and another perpendicular to it, <math>\mathbf x = \mathbf x_\parallel + \mathbf x_\perp</math>. Applying projection, we get <math display="block"> P_{\mathbf u} \mathbf x = \mathbf u \mathbf u^\mathsf{T} \mathbf x_\parallel + \mathbf u \mathbf u^\mathsf{T} \mathbf x_\perp = \mathbf u \left( \sgn\left(\mathbf u^\mathsf{T} \mathbf x_\parallel\right) \left \| \mathbf x_\parallel \right \| \right) + \mathbf u \cdot \mathbf 0 = \mathbf x_\parallel </math> by the properties of the [[dot product]] of parallel and perpendicular vectors. This formula can be generalized to orthogonal projections on a subspace of arbitrary [[dimension (vector space)|dimension]]. Let <math>\mathbf u_1, \ldots, \mathbf u_k</math> be an [[orthonormal basis]] of the subspace <math>U</math>, with the assumption that the integer <math>k \geq 1</math>, and let <math>A</math> denote the <math>n \times k</math> matrix whose columns are <math>\mathbf u_1, \ldots, \mathbf u_k</math>, i.e., <math>A = \begin{bmatrix} \mathbf u_1 & \cdots & \mathbf u_k \end{bmatrix}</math>. Then the projection is given by:<ref>Meyer, equation (5.13.4)</ref> <math display="block">P_A = A A^\mathsf{T}</math> which can be rewritten as <math display="block">P_A = \sum_i \langle \mathbf u_i, \cdot \rangle \mathbf u_i.</math> The matrix <math>A^\mathsf{T}</math> is the [[partial isometry]] that vanishes on the [[orthogonal complement]] of <math>U</math>, and <math>A</math> is the isometry that embeds <math>U</math> into the underlying vector space. The range of <math>P_A</math> is therefore the ''final space'' of <math>A</math>. It is also clear that <math>A A^{\mathsf T}</math> is the identity operator on <math>U</math>. The orthonormality condition can also be dropped. If <math>\mathbf u_1, \ldots, \mathbf u_k</math> is a (not necessarily orthonormal) [[basis (linear algebra)|basis]] with <math>k \geq 1</math>, and <math>A</math> is the matrix with these vectors as columns, then the projection is:<ref>{{Citation | last1 = Banerjee | first1 = Sudipto | last2 = Roy | first2 = Anindya | date = 2014 | title = Linear Algebra and Matrix Analysis for Statistics | series = Texts in Statistical Science | publisher = Chapman and Hall/CRC | edition = 1st | isbn = 978-1420095388 | url=https://books.google.com/books?id=iIOhAwAAQBAJ&q=projection}}</ref><ref>Meyer, equation (5.13.3)</ref> <math display="block">P_A = A \left(A^\mathsf{T} A\right)^{-1} A^\mathsf{T}.</math> The matrix <math>A</math> still embeds <math>U</math> into the underlying vector space but is no longer an isometry in general. The matrix <math>\left(A^\mathsf{T}A\right)^{-1}</math> is a "normalizing factor" that recovers the norm. For example, the [[rank of a linear operator|rank]]-1 operator <math>\mathbf u \mathbf u^\mathsf{T}</math> is not a projection if <math>\left\|\mathbf u \right\| \neq 1.</math> After dividing by <math>\mathbf u^\mathsf{T} \mathbf u = \left\| \mathbf u \right\|^2,</math> we obtain the projection <math>\mathbf u \left(\mathbf u^\mathsf{T} \mathbf u \right)^{-1} \mathbf u^\mathsf{T}</math> onto the subspace spanned by <math>u</math>. In the general case, we can have an arbitrary [[positive definite]] matrix <math>D</math> defining an inner product <math>\langle x, y \rangle_D = y^\dagger Dx</math>, and the projection <math>P_A</math> is given by <math display="inline">P_A x = \operatorname{argmin}_{y \in \operatorname{range}(A)} \left\|x - y\right\|^2_D</math>. Then <math display="block">P_A = A \left(A^\mathsf{T} D A\right)^{-1} A^\mathsf{T} D.</math> When the range space of the projection is generated by a [[Frame of a vector space|frame]] (i.e. the number of generators is greater than its dimension), the formula for the projection takes the form: <math>P_A = A A^+</math>. Here <math>A^+</math> stands for the [[Moore–Penrose pseudoinverse]]. This is just one of many ways to construct the projection operator. If <math>\begin{bmatrix} A & B \end{bmatrix}</math> is a non-singular matrix and <math>A^\mathsf{T}B = 0</math> (i.e., <math>B</math> is the [[null space]] matrix of <math>A</math>),<ref>See also [[Linear least squares (mathematics)#Properties of the least-squares estimators|Linear least squares (mathematics) § Properties of the least-squares estimators]].</ref> the following holds: <math display="block">\begin{align} I &= \begin{bmatrix} A & B \end{bmatrix} \begin{bmatrix} A & B \end{bmatrix}^{-1}\begin{bmatrix} A^\mathsf{T} \\ B^\mathsf{T} \end{bmatrix}^{-1} \begin{bmatrix} A^\mathsf{T} \\ B^\mathsf{T} \end{bmatrix} \\ &= \begin{bmatrix} A & B \end{bmatrix} \left( \begin{bmatrix} A^\mathsf{T} \\ B^\mathsf{T} \end{bmatrix} \begin{bmatrix} A & B \end{bmatrix} \right )^{-1} \begin{bmatrix} A^\mathsf{T} \\B^\mathsf{T} \end{bmatrix} \\ &= \begin{bmatrix} A & B \end{bmatrix} \begin{bmatrix}A^\mathsf{T}A&O\\O&B^\mathsf{T}B\end{bmatrix}^{-1} \begin{bmatrix} A^\mathsf{T} \\ B^\mathsf{T} \end{bmatrix}\\[4pt] &= A \left(A^\mathsf{T}A\right)^{-1} A^\mathsf{T} + B \left(B^\mathsf{T}B\right)^{-1} B^\mathsf{T} \end{align}</math> If the orthogonal condition is enhanced to <math>A^\mathsf{T}W B = A^\mathsf{T}W^\mathsf{T}B = 0</math> with <math>W</math> non-singular<!-- and symmetric-->, the following holds: <math display="block">I = \begin{bmatrix}A & B\end{bmatrix} \begin{bmatrix}\left(A^\mathsf{T} W A\right)^{-1} A^\mathsf{T} \\ \left(B^\mathsf{T} W B\right)^{-1} B^\mathsf{T} \end{bmatrix} W.</math> All these formulas also hold for complex inner product spaces, provided that the [[conjugate transpose]] is used instead of the transpose. Further details on sums of projectors can be found in Banerjee and Roy (2014).<ref>{{Citation | last1 = Banerjee | first1 = Sudipto | last2 = Roy | first2 = Anindya | date = 2014 | title = Linear Algebra and Matrix Analysis for Statistics | series = Texts in Statistical Science | publisher = Chapman and Hall/CRC | edition = 1st | isbn = 978-1420095388 | url=https://books.google.com/books?id=iIOhAwAAQBAJ&q=projection}}</ref> Also see Banerjee (2004)<ref>{{Citation | last = Banerjee | first = Sudipto | date = 2004 | title = Revisiting Spherical Trigonometry with Orthogonal Projectors | journal = The College Mathematics Journal | volume = 35 | issue = 5 | pages = 375–381 | doi=10.1080/07468342.2004.11922099 | s2cid = 122277398 }}</ref> for application of sums of projectors in basic [[spherical trigonometry]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)