Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Q-learning
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Others === Delayed Q-learning is an alternative implementation of the online ''Q''-learning algorithm, with [[Probably approximately correct learning|probably approximately correct (PAC) learning]].<ref>{{Cite journal |last1=Strehl |first1=Alexander L. |last2=Li |first2=Lihong |last3=Wiewiora |first3=Eric |last4=Langford |first4=John |last5=Littman |first5=Michael L. |year=2006 |title=Pac model-free reinforcement learning |url=https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/published-14.pdf |journal=Proc. 22nd ICML |pages=881–888}}</ref> Greedy GQ is a variant of ''Q''-learning to use in combination with (linear) function approximation.<ref>{{cite web |first1=Hamid |last1=Maei |first2=Csaba |last2=Szepesvári |first3=Shalabh |last3=Bhatnagar |first4=Richard |last4=Sutton |url=https://webdocs.cs.ualberta.ca/~sutton/papers/MSBS-10.pdf |title=Toward off-policy learning control with function approximation in Proceedings of the 27th International Conference on Machine Learning |pages=719–726 |year=2010 |access-date=2016-01-25 |archive-url=https://web.archive.org/web/20120908050052/http://webdocs.cs.ualberta.ca/~sutton/papers/MSBS-10.pdf |archive-date=2012-09-08 |url-status=dead }}</ref> The advantage of Greedy GQ is that convergence is guaranteed even when function approximation is used to estimate the action values. Distributional Q-learning is a variant of ''Q''-learning which seeks to model the distribution of returns rather than the expected return of each action. It has been observed to facilitate estimate by deep neural networks and can enable alternative control methods, such as risk-sensitive control.<ref>{{cite journal |last1=Hessel |first1=Matteo |last2=Modayil |first2=Joseph |last3=van Hasselt |first3=Hado |last4=Schaul |first4=Tom |last5=Ostrovski |first5=Georg |last6=Dabney |first6=Will |last7=Horgan |first7=Dan |last8=Piot |first8=Bilal |last9=Azar |first9=Mohammad |last10=Silver |first10=David |title=Rainbow: Combining Improvements in Deep Reinforcement Learning |journal=Proceedings of the AAAI Conference on Artificial Intelligence |date=February 2018 |volume=32 |doi=10.1609/aaai.v32i1.11796 |arxiv=1710.02298 |s2cid=19135734 }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)