Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Random forest
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Variants == Instead of decision trees, linear models have been proposed and evaluated as base estimators in random forests, in particular [[multinomial logistic regression]] and [[naive Bayes classifier]]s.<ref name=":0">{{Cite journal |last1=Piryonesi |first1=S. Madeh |last2=El-Diraby |first2=Tamer E. |date=2021-02-01 |title=Using Machine Learning to Examine Impact of Type of Performance Indicator on Flexible Pavement Deterioration Modeling |url=http://ascelibrary.org/doi/10.1061/%28ASCE%29IS.1943-555X.0000602 |journal=Journal of Infrastructure Systems |language=en |volume=27 |issue=2 |page=04021005 |doi=10.1061/(ASCE)IS.1943-555X.0000602 |issn=1076-0342 |s2cid=233550030}}</ref><ref>{{cite journal |author=Prinzie, A. |author2=Van den Poel, D. |year=2008 |title=Random Forests for multiclass classification: Random MultiNomial Logit |journal=Expert Systems with Applications |volume=34 |issue=3 |pages=1721โ1732 |doi=10.1016/j.eswa.2007.01.029}}</ref><ref>{{Cite conference | doi = 10.1007/978-3-540-74469-6_35 | contribution=Random Multiclass Classification: Generalizing Random Forests to Random MNL and Random NB|title=Database and Expert Systems Applications: 18th International Conference, DEXA 2007, Regensburg, Germany, September 3-7, 2007, Proceedings |editor1=Roland Wagner |editor2=Norman Revell |editor3=Gรผnther Pernul| year=2007 | series=Lecture Notes in Computer Science | volume=4653 | pages=349โ358 | last1 = Prinzie | first1 = Anita| isbn=978-3-540-74467-2 }}</ref> In cases that the relationship between the predictors and the target variable is linear, the base learners may have an equally high accuracy as the ensemble learner.<ref name=":1">{{Cite journal|last1=Smith|first1=Paul F.|last2=Ganesh|first2=Siva|last3=Liu|first3=Ping|date=2013-10-01|title=A comparison of random forest regression and multiple linear regression for prediction in neuroscience|url=https://linkinghub.elsevier.com/retrieve/pii/S0165027013003026|journal=Journal of Neuroscience Methods|language=en|volume=220|issue=1|pages=85โ91|doi=10.1016/j.jneumeth.2013.08.024|pmid=24012917|s2cid=13195700}}</ref><ref name=":0" />
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)