Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Reconfigurable computing
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Classification of systems == {{More citations needed section|date=January 2015}} {{Original research section|date=January 2015}} As an emerging field, classifications of reconfigurable architectures are still being developed and refined as new architectures are developed; no unifying taxonomy has been suggested to date. However, several recurring parameters can be used to classify these systems. ===Granularity=== The granularity of the reconfigurable logic is defined as the size of the smallest functional unit (configurable logic block, CLB) that is addressed by the mapping tools. High granularity, which can also be known as fine-grained, often implies a greater flexibility when implementing algorithms into the hardware. However, there is a penalty associated with this in terms of increased power, area and delay due to greater quantity of routing required per computation. Fine-grained architectures work at the bit-level manipulation level; whilst coarse grained processing elements (reconfigurable datapath unit, rDPU) are better optimised for standard data path applications. One of the drawbacks of coarse grained architectures are that they tend to lose some of their utilisation and performance if they need to perform smaller computations than their granularity provides, for example for a one bit add on a four bit wide functional unit would waste three bits. This problem can be solved by having a coarse grain array ([[reconfigurable datapath array]], rDPA) and a [[FPGA]] on the same chip. Coarse-grained architectures ([[rDPA]]) are intended for the implementation for algorithms needing word-width data paths (rDPU). As their functional blocks are optimized for large computations and typically comprise word wide [[arithmetic logic unit]]s (ALU), they will perform these computations more quickly and with more power efficiency than a set of interconnected smaller functional units; this is due to the connecting wires being shorter, resulting in less wire capacitance and hence faster and lower power designs. A potential undesirable consequence of having larger computational blocks is that when the size of operands may not match the algorithm an inefficient utilisation of resources can result. Often the type of applications to be run are known in advance allowing the logic, memory and routing resources to be tailored to enhance the performance of the device whilst still providing a certain level of flexibility for future adaptation. Examples of this are domain specific arrays aimed at gaining better performance in terms of power, area, throughput than their more generic finer grained [[FPGA]] cousins by reducing their flexibility. ===Rate of reconfiguration=== Configuration of these reconfigurable systems can happen at deployment time, between execution phases or during execution. In a typical reconfigurable system, a bit stream is used to program the device at deployment time. Fine grained systems by their own nature require greater configuration time than more coarse-grained architectures due to more elements needing to be addressed and programmed. Therefore, more coarse-grained architectures gain from potential lower energy requirements, as less information is transferred and utilised. Intuitively, the slower the rate of reconfiguration the smaller the power consumption as the associated energy cost of reconfiguration are amortised over a longer period of time. Partial re-configuration aims to allow part of the device to be reprogrammed while another part is still performing active computation. Partial re-configuration allows smaller reconfigurable bit streams thus not wasting energy on transmitting redundant information in the bit stream. Compression of the bit stream is possible but careful analysis is to be carried out to ensure that the energy saved by using smaller bit streams is not outweighed by the computation needed to decompress the data. ===Host coupling=== Often the reconfigurable array is used as a processing accelerator attached to a host processor. The level of coupling determines the type of data transfers, latency, power, throughput and overheads involved when utilising the reconfigurable logic. Some of the most intuitive designs use a peripheral bus to provide a coprocessor like arrangement for the reconfigurable array. However, there have also been implementations where the reconfigurable fabric is much closer to the processor, some are even implemented into the data path, utilising the processor registers. The job of the host processor is to perform the control functions, configure the logic, schedule data and to provide external interfacing. ===Routing/interconnects=== The flexibility in reconfigurable devices mainly comes from their routing interconnect. One style of interconnect made popular by [[FPGA]]s vendors, Xilinx and Altera are the island style layout, where blocks are arranged in an array with vertical and horizontal routing. A layout with inadequate routing may suffer from poor flexibility and resource utilisation, therefore providing limited performance. If too much interconnect is provided this requires more transistors than necessary and thus more silicon area, longer wires and more power consumption.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)