Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Residue (complex analysis)
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Example 1 ==== As an example, consider the [[contour integral]] :<math>\oint_C {e^z \over z^5}\,dz</math> where ''C'' is some [[simple closed curve]] about 0. Let us evaluate this integral using a standard convergence result about integration by series. We can substitute the [[Taylor series]] for <math>e^z</math> into the integrand. The integral then becomes :<math>\oint_C {1 \over z^5}\left(1+z+{z^2 \over 2!} + {z^3\over 3!} + {z^4 \over 4!} + {z^5 \over 5!} + {z^6 \over 6!} + \cdots\right)\,dz.</math> Let us bring the 1/''z''<sup>5</sup> factor into the series. The contour integral of the series then writes : <math> \begin{align} & \oint_C \left({1 \over z^5}+{z \over z^5}+{z^2 \over 2!\;z^5} + {z^3\over 3!\;z^5} + {z^4 \over 4!\;z^5} + {z^5 \over 5!\;z^5} + {z^6 \over 6!\;z^5} + \cdots\right)\,dz \\[4pt] = {} & \oint_C \left({1 \over\;z^5}+{1 \over\;z^4}+{1 \over 2!\;z^3} + {1\over 3!\;z^2} + {1 \over 4!\;z} + {1\over\;5!} + {z \over 6!} + \cdots\right)\,dz. \end{align} </math> Since the series converges uniformly on the support of the integration path, we are allowed to exchange integration and summation. The series of the path integrals then collapses to a much simpler form because of the previous computation. So now the integral around ''C'' of every other term not in the form ''cz''<sup>−1</sup> is zero, and the integral is reduced to : <math>\oint_C {1 \over 4!\;z} \,dz= {1 \over 4!} \oint_C{1 \over z}\,dz={1 \over 4!}(2\pi i) = {\pi i \over 12}.</math> The value 1/4! is the ''residue'' of ''e''<sup>''z''</sup>/''z''<sup>5</sup> at ''z'' = 0, and is denoted : <math>\operatorname{Res}_0 {e^z \over z^5}, \text{ or } \operatorname{Res}_{z=0} {e^z \over z^5}, \text{ or } \operatorname{Res}(f,0) \text{ for } f={e^z \over z^5}.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)