Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Riemann zeta function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Estimates of the maximum of the modulus of the zeta function=== Let the functions {{math|''F''(''T'';''H'')}} and {{math|''G''(''s''<sub>0</sub>;Ξ)}} be defined by the equalities : <math> F(T;H) = \max_{|t-T|\le H}\left|\zeta\left(\tfrac{1}{2}+it\right)\right|,\qquad G(s_{0};\Delta) = \max_{|s-s_{0}|\le\Delta}|\zeta(s)|. </math> Here {{mvar|T}} is a sufficiently large positive number, {{math|0 < ''H'' βͺ log log ''T''}}, {{math|''s''<sub>0</sub> {{=}} ''Ο''<sub>0</sub> + ''iT''}}, {{math|{{sfrac|1|2}} β€ ''Ο''<sub>0</sub> β€ 1}}, {{math|0 < Ξ < {{sfrac|1|3}}}}. Estimating the values {{mvar|F}} and {{mvar|G}} from below shows, how large (in modulus) values {{math|''ΞΆ''(''s'')}} can take on short intervals of the critical line or in small neighborhoods of points lying in the critical strip {{math|0 β€ Re(''s'') β€ 1}}. The case {{math|''H'' β« log log ''T''}} was studied by [[Kanakanahalli Ramachandra]]; the case {{math|Ξ > ''c''}}, where {{math|''c''}} is a sufficiently large constant, is trivial. [[Anatolii Alexeevitch Karatsuba|Anatolii Karatsuba]] proved,<ref>{{cite journal| first=A. A.| last=Karatsuba| title= Lower bounds for the maximum modulus of {{math|''ΞΆ''(''s'')}} in small domains of the critical strip | pages=796β798| journal= Mat. Zametki| volume=70|issue=5| year=2001}}</ref><ref>{{cite journal| first=A. A.| last=Karatsuba| title= Lower bounds for the maximum modulus of the Riemann zeta function on short segments of the critical line| pages=99β104| journal= Izv. Ross. Akad. Nauk, Ser. Mat.| volume=68|issue=8| year=2004| doi=10.1070/IM2004v068n06ABEH000513| bibcode=2004IzMat..68.1157K| s2cid=250796539}}</ref> in particular, that if the values {{mvar|H}} and {{math|Ξ}} exceed certain sufficiently small constants, then the estimates : <math> F(T;H) \ge T^{- c_1},\qquad G(s_0; \Delta) \ge T^{-c_2}, </math> hold, where {{math|''c''<sub>1</sub>}} and {{math|''c''<sub>2</sub>}} are certain absolute constants.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)