Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Screw theory
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Work of forces acting on a rigid body == Consider the set of forces '''F'''<sub>1</sub>, '''F'''<sub>2</sub> ... '''F'''<sub>''n''</sub> act on the points '''X'''<sub>1</sub>, '''X'''<sub>2</sub> ... '''X'''<sub>''n''</sub> in a rigid body. The trajectories of '''X'''<sub>''i''</sub>, ''i'' = 1,...,''n'' are defined by the movement of the rigid body with rotation [''A''(''t'')] and the translation '''d'''(''t'') of a reference point in the body, given by : <math> \mathbf{X}_i(t)= [A(t)]\mathbf{x}_i + \mathbf{d}(t)\quad i=1,\ldots, n, </math> where '''x'''<sub>''i''</sub> are coordinates in the moving body. The velocity of each point '''X'''<sub>i</sub> is : <math>\mathbf{V}_i = \vec{\omega}\times(\mathbf{X}_i-\mathbf{d}) + \mathbf{v},</math> where '''ω''' is the angular velocity vector and '''v''' is the derivative of '''d'''(''t''). The work by the forces over the displacement ''δ'''''r'''<sub>''i''</sub>='''v'''<sub>''i''</sub>''δt'' of each point is given by : <math> \delta W = \mathbf{F}_1\cdot\mathbf{V}_1\delta t+\mathbf{F}_2\cdot\mathbf{V}_2\delta t + \cdots + \mathbf{F}_n\cdot\mathbf{V}_n\delta t.</math> Define the velocities of each point in terms of the twist of the moving body to obtain : <math> \delta W = \sum_{i=1}^n \mathbf{F}_i\cdot (\vec{\omega}\times(\mathbf{X}_i -\mathbf{d}) + \mathbf{v})\delta t. </math> Expand this equation and collect coefficients of ω and '''v''' to obtain : <math> \begin{align} \delta W & = \left(\sum_{i=1}^n \mathbf{F}_i\right) \cdot\mathbf{d}\times \vec{\omega}\delta t+ \left(\sum_{i=1}^n \mathbf{F}_i\right)\cdot\mathbf{v}\delta t + \left(\sum_{i=1}^n \mathbf{X}_i \times\mathbf{F}_i\right) \cdot \vec{\omega}\delta t \\[4pt] & = \left(\sum_{i=1}^n \mathbf{F}_i\right) \cdot(\mathbf{v}+\mathbf{d}\times \vec{\omega}) \delta t + \left(\sum_{i=1}^n \mathbf{X}_i \times\mathbf{F}_i\right) \cdot\vec{\omega}\delta t. \end{align} </math> Introduce the twist of the moving body and the wrench acting on it given by : <math> \mathsf{T} = (\vec{\omega},\mathbf{d}\times \vec{\omega} +\mathbf{v})=(\mathbf{T},\mathbf{T}^\circ),\quad\mathsf{W} = \left(\sum_{i=1}^n \mathbf{F}_i, \sum_{i=1}^n \mathbf{X}_i \times\mathbf{F}_i\right) = (\mathbf{W},\mathbf{W}^\circ), </math> then work takes the form : <math>\delta W = (\mathbf{W}\cdot\mathbf{T}^\circ + \mathbf{W}^\circ \cdot\mathbf{T})\delta t.</math> The 6×6 matrix [Π] is used to simplify the calculation of work using screws, so that : <math>\delta W = (\mathbf{W}\cdot\mathbf{T}^\circ + \mathbf{W}^\circ \cdot\mathbf{T})\delta t = \mathsf{W}[\Pi]\mathsf{T}\delta t,</math> where : <math> [\Pi] =\begin{bmatrix} 0 & I \\ I & 0 \end{bmatrix},</math> and [I] is the 3×3 identity matrix. === Reciprocal screws === If the virtual work of a wrench on a twist is zero, then the forces and torque of the wrench are constraint forces relative to the twist. The wrench and twist are said to be ''reciprocal,'' that is if : <math>\delta W =\mathsf{W}[\Pi]\mathsf{T}\delta t = 0,</math> then the screws ''W'' and ''T'' are reciprocal. === Twists in robotics === In the study of robotic systems the components of the twist are often transposed to eliminate the need for the 6×6 matrix [Π] in the calculation of work.<ref name="McCarthy"/> In this case the twist is defined to be : <math>\check{\mathsf{T}} = (\mathbf{d}\times \vec{\omega} +\mathbf{v},\vec{\omega}),</math> so the calculation of work takes the form : <math>\delta W =\mathsf{W}\cdot\check{\mathsf{T}}\delta t.</math> In this case, if : <math>\delta W =\mathsf{W}\cdot\check{\mathsf{T}}\delta t= 0,</math> then the wrench W is reciprocal to the twist T.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)