Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Sequence
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Applications and important results=== If <math>(a_n)</math> and <math>(b_n)</math> are convergent sequences, then the following limits exist, and can be computed as follows:<ref name="Gaughan" /><ref name="Dawkins">{{cite web |url=http://tutorial.math.lamar.edu/Classes/CalcII/Sequences.aspx |title=Series and Sequences |last1=Dawikins |first1=Paul |work=Paul's Online Math Notes/Calc II (notes) |access-date=18 December 2012 |archive-date=30 November 2012 |archive-url=https://web.archive.org/web/20121130095834/http://tutorial.math.lamar.edu/Classes/CalcII/Sequences.aspx |url-status=live }}</ref> * <math>\lim_{n\to\infty} (a_n \pm b_n) = \lim_{n\to\infty} a_n \pm \lim_{n\to\infty} b_n</math> * <math>\lim_{n\to\infty} c a_n = c \lim_{n\to\infty} a_n</math> for all real numbers <math>c</math> * <math>\lim_{n\to\infty} (a_n b_n) = \bigl( \lim_{n\to\infty} a_n \bigr) \bigl( \lim_{n\to\infty} b_n \bigr)</math> * <math>\lim_{n\to\infty} \frac{a_n} {b_n} = \bigl( \lim \limits_{n\to\infty} a_n \bigr) \big/ \bigl( \lim \limits_{n\to\infty} b_n \bigr)</math>, provided that <math>\lim_{n\to\infty} b_n \ne 0</math> * <math>\lim_{n\to\infty} a_n^p = \bigl( \lim_{n\to\infty} a_n \bigr)^p</math> for all <math>p > 0</math> and <math>a_n > 0</math> Moreover: * If <math>a_n \leq b_n</math> for all <math>n</math> greater than some <math>N</math>, then <math>\lim_{n\to\infty} a_n \leq \lim_{n\to\infty} b_n </math>.{{efn|If the inequalities are replaced by strict inequalities then this is false: There are sequences such that <math>a_n < b_n</math> for all <math>n</math>, but <math>\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n </math>.}} * ([[Squeeze Theorem]])<br>If <math>(c_n)</math> is a sequence such that <math>a_n \leq c_n \leq b_n</math> for all <math>n > N</math> {{nowrap|and <math>\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = L</math>,}}<br>then <math>(c_n)</math> is convergent, and <math>\lim_{n\to\infty} c_n = L</math>. * If a sequence is [[#Bounded|bounded]] and [[#Increasing and decreasing|monotonic]] then it is convergent. * A sequence is convergent if and only if all of its subsequences are convergent.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)