Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Spherical trigonometry
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Cotangent four-part formulae=== The six parts of a triangle may be written in cyclic order as ({{mvar|aCbAcB}}). The cotangent, or four-part, formulae relate two sides and two angles forming four ''consecutive'' parts around the triangle, for example ({{mvar|aCbA}}) or {{mvar|BaCb}}). In such a set there are inner and outer parts: for example in the set ({{mvar|BaCb}}) the inner angle is {{mvar|C}}, the inner side is {{mvar|a}}, the outer angle is {{mvar|B}}, the outer side is {{mvar|b}}. The cotangent rule may be written as (Todhunter,<ref name=todhunter/> Art.44) <math display=block> \cos\!\Bigl(\begin{smallmatrix}\text{inner} \\ \text{side}\end{smallmatrix}\Bigr) \cos\!\Bigl(\begin{smallmatrix}\text{inner} \\ \text{angle}\end{smallmatrix}\Bigr) = \cot\!\Bigl(\begin{smallmatrix}\text{outer} \\ \text{side}\end{smallmatrix}\Bigr) \sin\!\Bigl(\begin{smallmatrix}\text{inner} \\ \text{side}\end{smallmatrix}\Bigr) - \cot\!\Bigl(\begin{smallmatrix}\text{outer} \\ \text{angle}\end{smallmatrix}\Bigr) \sin\!\Bigl(\begin{smallmatrix}\text{inner} \\ \text{angle}\end{smallmatrix}\Bigr), </math> and the six possible equations are (with the relevant set shown at right): <math display=block>\begin{alignat}{5} \text{(CT1)}&& \qquad \cos b\,\cos C &= \cot a\,\sin b - \cot A \,\sin C \qquad&&(aCbA)\\[0ex] \text{(CT2)}&& \cos b\,\cos A &= \cot c\,\sin b - \cot C \,\sin A &&(CbAc)\\[0ex] \text{(CT3)}&& \cos c\,\cos A &= \cot b\,\sin c - \cot B \,\sin A &&(bAcB)\\[0ex] \text{(CT4)}&& \cos c\,\cos B &= \cot a\,\sin c - \cot A \,\sin B &&(AcBa)\\[0ex] \text{(CT5)}&& \cos a\,\cos B &= \cot c\,\sin a - \cot C \,\sin B &&(cBaC)\\[0ex] \text{(CT6)}&& \cos a\,\cos C &= \cot b\,\sin a - \cot B \,\sin C &&(BaCb) \end{alignat}</math> To prove the first formula start from the first cosine rule and on the right-hand side substitute for {{math|cos ''c''}} from the third cosine rule: <math display=block>\begin{align} \cos a &= \cos b \cos c + \sin b \sin c \cos A \\ &= \cos b\ (\cos a \cos b + \sin a \sin b \cos C) + \sin b \sin C \sin a \cot A \\ \cos a \sin^2 b &= \cos b \sin a \sin b \cos C + \sin b \sin C \sin a \cot A. \end{align}</math> The result follows on dividing by {{math|sin ''a'' sin ''b''}}. Similar techniques with the other two cosine rules give CT3 and CT5. The other three equations follow by applying rules 1, 3 and 5 to the polar triangle.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)