Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Student's t-test
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Exact method for unequal variances and sample sizes=== The test<ref>{{cite arXiv | eprint=2210.16473 | last1=Wang | first1=Chang | last2=Jia | first2=Jinzhu | title=Te Test: A New Non-asymptotic T-test for Behrens-Fisher Problems | year=2022 | class=math.ST }}</ref> deals with the famous [[Behrens–Fisher problem]], i.e., comparing the difference between the means of two normally distributed populations when the variances of the two populations are not assumed to be equal, based on two independent samples. The test is developed as an [[exact test]] that allows for '''unequal sample sizes''' and '''unequal variances''' of two populations. The exact property still holds even with '''extremely small''' and '''unbalanced sample sizes''' (e.g. <math>\ m \equiv n_\mathsf{X} = 50\ </math> vs. <math>\ n \equiv n_\mathsf{Y} = 5\ </math>). The statistic to test whether the means are different can be calculated as follows: Let <math>\ X = \left[\ X_1, X_2, \ldots, X_m\ \right]^\top\ </math> and <math>\ Y = \left[\ Y_1, Y_2, \ldots, Y_n\ \right]^\top\ </math> be the i.i.d. sample vectors (for <math>\ m \ge n\ </math>) from <math>\ \mathsf{Norm}\left(\ \mu_\mathsf{X},\ \sigma_\mathsf{X}^2\ \right)\ </math> and <math>\ \mathsf{Norm}\left(\ \mu_\mathsf{Y},\ \sigma_\mathsf{Y}^2\ \right)\ </math> separately. Let <math>\ (P^\top)_{n\times n}\ </math> be an <math>n\times n</math> orthogonal matrix whose elements of the first row are all <math>\ \tfrac{ 1 }{ \sqrt{ n\ } }\ ,</math> similarly, let <math>\ (Q^\top)_{n\times m}\ </math> be the first <math>\ n\ </math> rows of an <math>\ m\times m\ </math> orthogonal matrix (whose elements of the first row are all <math>\ \tfrac{ 1 }{ \sqrt{ m\ } }\ </math>). Then <math>\ Z \equiv \frac{\ \left( Q^\top \right)_{n\times m}\ X\ }{ \sqrt{ m\ } }\ -\ \frac{\ \left( P^\top \right)_{n\times n}\ Y\ }{ \sqrt{ n\ } }\ </math> is an {{mvar|n}}-dimensional normal random vector: :<math> Z ~\sim~ \mathsf{Norm}\left(\ \left[\ \mu_\mathsf{X} - \mu_\mathsf{Y},\ 0,\ 0,\ \ldots,\ 0\ \right]^\top\ ,\ \left( \frac{\ \sigma_\mathsf{X}^2\ }{ m } + \frac{\ \sigma_\mathsf{Y}^2\ }{ n }\right)\ I_n\ \right) ~.</math> From the above distribution we see that the first element of the vector {{mvar|Z}} is :<math> Z_1 = \bar X - \bar Y = \frac{ 1 }{\ m\ } \sum_{i=1}^m\ X_i - \frac{ 1 }{\ n\ } \sum_{j=1}^n\ Y_j\ ,</math> hence the first element is distributed as :<math> Z_1 - \left( \mu_\mathsf{X} - \mu_\mathsf{Y} \right) ~\sim~ \mathsf{Norm}\left(\ 0,\ \frac{\ \sigma_\mathsf{X}^2\ }{ m } + \frac{\ \sigma_\mathsf{Y}^2\ }{ n }\ \right)\ ,</math> and the squares of the remaining elements of {{mvar|Z}} are [[chi-square distribution|chi-squared]] distributed :<math> \frac{\ \sum_{i=2}^n Z^2_i\ }{\ n - 1\ } ~\sim~ \frac{\ \chi^2_{n - 1}\ }{\ n - 1\ } \times\left( \frac{\ \sigma_\mathsf{X}^2\ }{ m }+\frac{\ \sigma_\mathsf{Y}^2\ }{ n } \right) </math> and by construction of the orthogonal matricies {{mvar|P}} and {{mvar|Q}} we have :<math> Z_1 - \left( \mu_\mathsf{X} - \mu_\mathsf{Y} \right) \quad \perp \quad \sum_{i=2}^n Z^2_i\ ,</math> so {{mvar|Z}}{{sub|1}}, the first element of {{mvar|Z}}, is statistically independent of the remaining elements by orthogonality. Finally, take for the test statistic :<math> T_\mathsf{e} ~\equiv~ \frac{\ Z_1 - \left( \mu_\mathsf{X} - \mu_\mathsf{Y} \right)\ }{\ \sqrt{ \left( \sum_{i=2}^{n} Z^2_i \right) /\left( n - 1 \right)\ }\ } ~\sim~ t_{n - 1} ~.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)