Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Sufficient statistic
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Normal distribution=== If <math>X_1,\ldots,X_n</math> are independent and [[Normal distribution|normally distributed]] with expected value <math>\theta</math> (a parameter) and known finite variance <math>\sigma^2,</math> then :<math>T(X_1^n)=\overline{x}=\frac1n\sum_{i=1}^nX_i</math> is a sufficient statistic for <math>\theta.</math> To see this, consider the joint [[probability density function]] of <math>X_1^n=(X_1,\dots,X_n)</math>. Because the observations are independent, the pdf can be written as a product of individual densities, i.e. :<math>\begin{align} f_{X_1^n}(x_1^n) & = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left (-\frac{(x_i-\theta)^2}{2\sigma^2} \right ) \\ [6pt] &= (2\pi\sigma^2)^{-\frac{n}{2}} \exp \left ( -\sum_{i=1}^n \frac{(x_i-\theta)^2}{2\sigma^2} \right ) \\ [6pt] & = (2\pi\sigma^2)^{-\frac{n}{2}} \exp \left (-\sum_{i=1}^n \frac{ \left ( \left (x_i-\overline{x} \right ) - \left (\theta-\overline{x} \right ) \right )^2}{2\sigma^2} \right ) \\ [6pt] & = (2\pi\sigma^2)^{-\frac{n}{2}} \exp \left( -{1\over2\sigma^2} \left(\sum_{i=1}^n(x_i-\overline{x})^2 + \sum_{i=1}^n(\theta-\overline{x})^2 -2\sum_{i=1}^n(x_i-\overline{x})(\theta-\overline{x})\right) \right) \\ [6pt] &= (2\pi\sigma^2)^{-\frac{n}{2}} \exp \left( -{1\over2\sigma^2} \left (\sum_{i=1}^n(x_i-\overline{x})^2 + n(\theta-\overline{x})^2 \right ) \right ) && \sum_{i=1}^n(x_i-\overline{x})(\theta-\overline{x})=0 \\ [6pt] &= (2\pi\sigma^2)^{-\frac{n}{2}} \exp \left( -{1\over2\sigma^2} \sum_{i=1}^n (x_i-\overline{x})^2 \right ) \exp \left (-\frac{n}{2\sigma^2} (\theta-\overline{x})^2 \right ) \end{align}</math> The joint density of the sample takes the form required by the Fisher–Neyman factorization theorem, by letting :<math>\begin{align} h(x_1^n) &= (2\pi\sigma^2)^{-\frac{n}{2}} \exp \left( -{1\over2\sigma^2} \sum_{i=1}^n (x_i-\overline{x})^2 \right ) \\[6pt] g_\theta(x_1^n) &= \exp \left (-\frac{n}{2\sigma^2} (\theta-\overline{x})^2 \right ) \end{align}</math> Since <math>h(x_1^n)</math> does not depend on the parameter <math>\theta</math> and <math>g_{\theta}(x_1^n)</math> depends only on <math>x_1^n</math> through the function :<math>T(X_1^n)=\overline{x}=\frac1n\sum_{i=1}^nX_i,</math> the Fisher–Neyman factorization theorem implies <math>T(X_1^n)</math> is a sufficient statistic for <math>\theta</math>. If <math> \sigma^2 </math> is unknown and since <math>s^2 = \frac{1}{n-1} \sum_{i=1}^n \left(x_i - \overline{x} \right)^2 </math>, the above likelihood can be rewritten as :<math>\begin{align} f_{X_1^n}(x_1^n)= (2\pi\sigma^2)^{-n/2} \exp \left( -\frac{n-1}{2\sigma^2}s^2 \right) \exp \left (-\frac{n}{2\sigma^2} (\theta-\overline{x})^2 \right ) . \end{align}</math> The Fisher–Neyman factorization theorem still holds and implies that <math>(\overline{x},s^2)</math> is a joint sufficient statistic for <math> ( \theta , \sigma^2) </math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)