Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Super-resolution imaging
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Research== There is promising research on using [[convolutional neural network|deep convolutional networks]] to perform super-resolution.<ref>{{Cite arXiv|last1=Johnson|first1=Justin|last2=Alahi|first2=Alexandre|last3=Fei-Fei|first3=Li|date=2016-03-26|title=Perceptual Losses for Real-Time Style Transfer and Super-Resolution|eprint=1603.08155|class=cs.CV}}</ref> In particular work has been demonstrated showing the transformation of a 20x [[microscope]] image of pollen grains into a 1500x [[scanning electron microscope]] image using it.<ref>{{Cite journal|last1=Grant-Jacob|first1=James A|last2=Mackay|first2=Benita S|last3=Baker|first3=James A G|last4=Xie|first4=Yunhui|last5=Heath|first5=Daniel J|last6=Loxham|first6=Matthew|last7=Eason|first7=Robert W|last8=Mills|first8=Ben|date=2019-06-18|title=A neural lens for super-resolution biological imaging|journal=Journal of Physics Communications|volume=3|issue=6|pages=065004|doi=10.1088/2399-6528/ab267d|issn=2399-6528|bibcode=2019JPhCo...3f5004G|doi-access=free}}</ref> While this technique can increase the information content of an image, there is no guarantee that the upscaled features exist in the original image and [[Image scaling#Deep convolutional neural networks|deep convolutional upscalers]] should not be used in analytical applications with ambiguous inputs.<ref>{{Cite conference |author=Blau |first1=Yochai |last2=Michaeli |first2=Tomer |year=2018 |title=The perception-distortion tradeoff |conference=IEEE Conference on Computer Vision and Pattern Recognition |pages=6228β6237 |doi=10.1109/CVPR.2018.00652|arxiv=1711.06077 }}</ref><ref>{{Cite web |last=Zeeberg |first=Amos |date=2023-08-23 |title=The AI Tools Making Images Look Better |url=https://www.quantamagazine.org/the-ai-tools-making-images-look-better-20230823/ |access-date=2023-08-28 |website=Quanta Magazine |language=en}}</ref> These methods can [[Hallucination (artificial intelligence)|hallucinate]] image features, which can make them unsafe for medical use.<ref name="cohen-miccai-2018">{{cite conference <!-- Citation bot no --> |conference=21st International Conference, Granada, Spain, September 16β20, 2018, Proceedings, Part I |last1=Cohen |first1=Joseph Paul |chapter=Distribution Matching Losses Can Hallucinate Features in Medical Image Translation |title=Medical Image Computing and Computer Assisted Intervention β MICCAI 2018 |series=Lecture Notes in Computer Science |date=2018 |volume=11070 |pages=529β536 |doi=10.1007/978-3-030-00928-1_60 |arxiv=1805.08841 |isbn=978-3-030-00927-4 |s2cid=43919703 |chapter-url=https://www.springerprofessional.de/en/en/distribution-matching-losses-can-hallucinate-features-in-medical/16122390 |access-date=1 May 2022 | first2=Margaux |last2=Luck |first3= Sina |last3=Honari |editor1= Alejandro F. Frangi |editor2= Julia A. Schnabel |editor3= Christos Davatzikos |editor4= Carlos Alberola-LΓ³pez |editor5= Gabor Fichtinger }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)