Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Taylor's theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Taylor's theorem for multivariate functions === Using notations of the preceding section, one has the following theorem. {{math theorem|name=Multivariate version of Taylor's theorem<ref>Königsberger Analysis 2, p. 64 ff.</ref>|math_statement= Let {{math|''f'' : '''R'''<sup>''n''</sup> → '''R'''}} be a {{math|''k''}}-times [[continuously differentiable]] function at the point {{math|'''''a''''' ∈ '''R'''<sup>''n''</sup>}}. Then there exist functions {{math|''h''<sub>''α''</sub> : '''R'''<sup>''n''</sup> → '''R'''}}, where <math>|\alpha|=k,</math> such that <math display="block">\begin{align} & f(\boldsymbol{x}) = \sum_{|\alpha|\leq k} \frac{D^\alpha f(\boldsymbol{a})}{\alpha!} (\boldsymbol{x}-\boldsymbol{a})^\alpha + \sum_{|\alpha|=k} h_\alpha(\boldsymbol{x})(\boldsymbol{x}-\boldsymbol{a})^\alpha, \\ & \mbox{and}\quad \lim_{\boldsymbol{x}\to \boldsymbol{a}}h_\alpha(\boldsymbol{x})=0. \end{align}</math>}} If the function {{math|''f'' : '''R'''<sup>''n''</sup> → '''R'''}} is {{math|''k'' + 1}} times [[continuously differentiable]] in a [[closed ball]] <math>B = \{ \mathbf{y} \in \R^n : \left\|\mathbf{a}-\mathbf{y}\right\| \leq r\}</math> for some <math>r > 0</math>, then one can derive an exact formula for the remainder in terms of {{nowrap|({{math|''k''+1}})-th}} order [[partial derivatives]] of ''f'' in this neighborhood.<ref>{{cite web | title = Higher-Order Derivatives and Taylor's Formula in Several Variables | last = Folland | first = G. B. | url = https://sites.math.washington.edu/~folland/Math425/taylor2.pdf | website = Department of Mathematics {{!}} University of Washington | access-date = 2024-02-21 }}</ref> Namely, <math display="block"> \begin{align} & f( \boldsymbol{x} ) = \sum_{|\alpha|\leq k} \frac{D^\alpha f(\boldsymbol{a})}{\alpha!} (\boldsymbol{x}-\boldsymbol{a})^\alpha + \sum_{|\beta|=k+1} R_\beta(\boldsymbol{x})(\boldsymbol{x}-\boldsymbol{a})^\beta, \\ & R_\beta( \boldsymbol{x} ) = \frac{|\beta|}{\beta!} \int_0^1 (1-t)^{|\beta|-1}D^\beta f \big(\boldsymbol{a}+t( \boldsymbol{x}-\boldsymbol{a} )\big) \, dt. \end{align} </math> In this case, due to the [[continuous function|continuity]] of ({{math|''k''+1}})-th order [[partial derivative]]s in the [[compact set]] {{math|''B''}}, one immediately obtains the uniform estimates <math display="block"> \left|R_\beta(\boldsymbol{x})\right| \leq \frac{1}{\beta!} \max_{|\alpha|=|\beta|} \max_{\boldsymbol{y}\in B} |D^\alpha f(\boldsymbol{y})|, \qquad \boldsymbol{x}\in B. </math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)