Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Trigonometric functions
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Definition via integration === Another way to define the trigonometric functions in analysis is using integration.<ref name="Hardy"/><ref>{{citation|last=Bartle|year=1964|title=Elements of real analysis|publisher=|pages=315–316}}</ref> For a real number <math>t</math>, put <math display="block">\theta(t) = \int_0^t \frac{d\tau}{1+\tau^2}=\arctan t</math> where this defines this inverse tangent function. Also, <math>\pi</math> is defined by <math display="block">\frac12\pi = \int_0^\infty \frac{d\tau}{1+\tau^2}</math> a definition that goes back to [[Karl Weierstrass]].<ref>{{cite book |last=Weierstrass |first=Karl |author-link=Karl Weierstrass |chapter=Darstellung einer analytischen Function einer complexen Veränderlichen, deren absoluter Betrag zwischen zwei gegebenen Grenzen liegt |trans-chapter=Representation of an analytical function of a complex variable, whose absolute value lies between two given limits |language=de |title=Mathematische Werke |volume=1 |publication-place=Berlin |publisher=Mayer & Müller |year=1841 |publication-date=1894 |pages=51–66 |chapter-url=https://archive.org/details/mathematischewer01weieuoft/page/51/ }}</ref> On the interval <math>-\pi/2<\theta<\pi/2</math>, the trigonometric functions are defined by inverting the relation <math>\theta = \arctan t</math>. Thus we define the trigonometric functions by <math display="block">\tan\theta = t,\quad \cos\theta = (1+t^2)^{-1/2},\quad \sin\theta = t(1+t^2)^{-1/2}</math> where the point <math>(t,\theta)</math> is on the graph of <math>\theta=\arctan t</math> and the positive square root is taken. This defines the trigonometric functions on <math>(-\pi/2,\pi/2)</math>. The definition can be extended to all real numbers by first observing that, as <math>\theta\to\pi/2</math>, <math>t\to\infty</math>, and so <math>\cos\theta = (1+t^2)^{-1/2}\to 0</math> and <math>\sin\theta = t(1+t^2)^{-1/2}\to 1</math>. Thus <math>\cos\theta</math> and <math>\sin\theta</math> are extended continuously so that <math>\cos(\pi/2)=0,\sin(\pi/2)=1</math>. Now the conditions <math>\cos(\theta+\pi)=-\cos(\theta)</math> and <math>\sin(\theta+\pi)=-\sin(\theta)</math> define the sine and cosine as periodic functions with period <math>2\pi</math>, for all real numbers. Proving the basic properties of sine and cosine, including the fact that sine and cosine are analytic, one may first establish the addition formulae. First, <math display="block">\arctan s + \arctan t = \arctan \frac{s+t}{1-st}</math> holds, provided <math>\arctan s+\arctan t\in(-\pi/2,\pi/2)</math>, since <math display="block">\arctan s + \arctan t= \int_{-s}^t\frac{d\tau}{1+\tau^2}=\int_0^{\frac{s+t}{1-st}}\frac{d\tau}{1+\tau^2}</math> after the substitution <math>\tau \to \frac{s+\tau}{1-s\tau}</math>. In particular, the limiting case as <math>s\to\infty</math> gives <math display="block">\arctan t + \frac{\pi}{2} = \arctan(-1/t),\quad t\in (-\infty,0).</math> Thus we have <math display="block">\sin\left(\theta + \frac{\pi}{2}\right) = \frac{-1}{t\sqrt{1+(-1/t)^2}} = \frac{-1}{\sqrt{1+t^2}} = -\cos(\theta)</math> and <math display="block">\cos\left(\theta + \frac{\pi}{2}\right) = \frac{1}{\sqrt{1+(-1/t)^2}} = \frac{t}{\sqrt{1+t^2}} = \sin(\theta).</math> So the sine and cosine functions are related by translation over a quarter period <math>\pi/2</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)