Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Uncertainty principle
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Limitations=== The derivation of the Robertson inequality for operators <math>\hat{A}</math> and <math>\hat{B}</math> requires <math>\hat{A}\hat{B}\psi</math> and <math>\hat{B}\hat{A}\psi</math> to be defined. There are quantum systems where these conditions are not valid.<ref>{{Cite journal |last=Davidson |first=Ernest R. |date=1965-02-15 |title=On Derivations of the Uncertainty Principle |url=https://pubs.aip.org/jcp/article/42/4/1461/208937/On-Derivations-of-the-Uncertainty-Principle |journal=The Journal of Chemical Physics |language=en |volume=42 |issue=4 |pages=1461β1462 |doi=10.1063/1.1696139 |bibcode=1965JChPh..42.1461D |issn=0021-9606 |access-date=2024-01-20 |archive-date=2024-02-23 |archive-url=https://web.archive.org/web/20240223160247/https://pubs.aip.org/aip/jcp/article-abstract/42/4/1461/208937/On-Derivations-of-the-Uncertainty-Principle?redirectedFrom=fulltext |url-status=live }}</ref> One example is a quantum [[particle in a ring|particle on a ring]], where the wave function depends on an angular variable <math>\theta</math> in the interval <math>[0,2\pi]</math>. Define "position" and "momentum" operators <math>\hat{A}</math> and <math>\hat{B}</math> by <math display="block">\hat{A}\psi(\theta)=\theta\psi(\theta),\quad \theta\in [0,2\pi],</math> and <math display="block">\hat{B}\psi=-i\hbar\frac{d\psi}{d\theta},</math> with periodic boundary conditions on <math>\hat{B}</math>. The definition of <math>\hat{A}</math> depends the <math>\theta</math> range from 0 to <math>2\pi</math>. These operators satisfy the usual commutation relations for position and momentum operators, <math>[\hat{A},\hat{B}]=i\hbar</math>. More precisely, <math>\hat{A}\hat{B}\psi-\hat{B}\hat{A}\psi=i\hbar\psi</math> whenever both <math>\hat{A}\hat{B}\psi</math> and <math>\hat{B}\hat{A}\psi</math> are defined, and the space of such <math>\psi</math> is a dense subspace of the quantum Hilbert space.<ref>{{Citation | last = Hall | first = B. C. | title = Quantum Theory for Mathematicians | publisher = Springer | year = 2013 | page = 245 | bibcode = 2013qtm..book.....H }}</ref> Now let <math>\psi</math> be any of the eigenstates of <math>\hat{B}</math>, which are given by <math>\psi(\theta)=e^{2\pi in\theta}</math>. These states are normalizable, unlike the eigenstates of the momentum operator on the line. Also the operator <math>\hat{A}</math> is bounded, since <math>\theta</math> ranges over a bounded interval. Thus, in the state <math>\psi</math>, the uncertainty of <math>B</math> is zero and the uncertainty of <math>A</math> is finite, so that <math display="block">\sigma_A\sigma_B=0.</math> The Robertson uncertainty principle does not apply in this case: <math>\psi</math> is not in the domain of the operator <math>\hat{B}\hat{A}</math>, since multiplication by <math>\theta</math> disrupts the periodic boundary conditions imposed on <math>\hat{B}</math>.<ref name="Hall2013">{{Citation | last = Hall | first = B. C. | title = Quantum Theory for Mathematicians | publisher = Springer | year = 2013 | pages = 245 | bibcode = 2013qtm..book.....H }}</ref> For the usual position and momentum operators <math>\hat{X}</math> and <math>\hat{P}</math> on the real line, no such counterexamples can occur. As long as <math>\sigma_x</math> and <math>\sigma_p</math> are defined in the state <math>\psi</math>, the Heisenberg uncertainty principle holds, even if <math>\psi</math> fails to be in the domain of <math>\hat{X}\hat{P}</math> or of <math>\hat{P}\hat{X}</math>.<ref>{{Citation | last = Hall | first = B. C. | title = Quantum Theory for Mathematicians | publisher = Springer | year = 2013 | pages = 246 | bibcode = 2013qtm..book.....H }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)