Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Barycentric coordinate system
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Examples of special points=== In the homogeneous barycentric coordinate system defined with respect to a triangle <math>ABC</math>, the following statements about special points of <math>ABC</math> hold. The three [[vertex (geometry)|vertices]] {{mvar|A}}, {{mvar|B}}, and {{mvar|C}} have coordinates<ref name=Scott>Scott, J. A. "Some examples of the use of areal coordinates in triangle geometry", ''[[Mathematical Gazette]]'' 83, November 1999, 472β477.</ref> <math display=block>\begin{array}{rccccc} A = & 1 &:& 0 &:& 0 \\ B = & 0 &:& 1 &:& 0 \\ C = & 0 &:& 0 &:& 1 \end{array}</math> The [[centroid]] has coordinates <math>1:1:1.</math><ref name=Scott/> If {{mvar|a}}, {{mvar|b}}, {{mvar|c}} are the [[length|edge lengths]] <math>BC</math>, <math>CA</math>, <math>AB</math> respectively, <math>\alpha</math>, <math>\beta</math>, <math>\gamma</math> are the [[angle | angle measures]] <math>\angle CAB</math>, <math>\angle ABC</math>, and <math>\angle BCA</math> respectively, and {{mvar|s}} is the [[semiperimeter]] of <math>ABC</math>, then the following statements about special points of <math>ABC</math> hold in addition. The [[circumcenter]] has coordinates<ref name=Scott/><ref name=Olympiad>{{cite web|last1=Schindler|first1=Max|last2=Chen|first2=Evan|title=Barycentric Coordinates in Olympiad Geometry|url=https://www.mit.edu/~evanchen/handouts/bary/bary-full.pdf|access-date=14 January 2016|date=July 13, 2012}}</ref><ref name=ck>Clark Kimberling's Encyclopedia of Triangles {{cite web |url=http://faculty.evansville.edu/ck6/encyclopedia/ETC.html |title=Encyclopedia of Triangle Centers |access-date=2012-06-02 |url-status=dead |archive-url=https://web.archive.org/web/20120419171900/http://faculty.evansville.edu/ck6/encyclopedia/ETC.html |archive-date=2012-04-19 }}</ref><ref name=":0">[http://mathworld.wolfram.com/BarycentricCoordinates.html Wolfram page on barycentric coordinates]</ref> <math display=block>\begin{array}{rccccc} & \sin 2\alpha &:& \sin 2\beta &:& \sin 2\gamma \\[2pt] =& 1-\cot\beta\cot\gamma &:& 1-\cot\gamma\cot\alpha &:& 1-\cot\alpha\cot\beta \\[2pt] =& a^2(-a^2+b^2+c^2) &:& b^2(a^2-b^2+c^2) &:& c^2(a^2+b^2-c^2) \end{array}</math> The [[orthocenter]] has coordinates<ref name=Scott/><ref name=Olympiad/> <math display=block>\begin{array}{rccccc} & \tan\alpha &:& \tan\beta &:& \tan\gamma \\[2pt] =& a\cos\beta\cos\gamma &:& b\cos\gamma\cos\alpha &:& c\cos\alpha\cos\beta \\[2pt] =& (a^2+b^2-c^2)(a^2-b^2+c^2) &:& (-a^2+b^2+c^2)(a^2+b^2-c^2) &:& (a^2-b^2+c^2)(-a^2+b^2+c^2) \end{array}</math> The [[incenter]] has coordinates <math>a:b:c=\sin \alpha:\sin \beta:\sin \gamma.</math><ref name=Olympiad/><ref name=NK>Dasari Naga, Vijay Krishna, "On the Feuerbach triangle", ''Forum Geometricorum'' 17 (2017), 289β300: p. 289. http://forumgeom.fau.edu/FG2017volume17/FG201731.pdf</ref> The [[excenter]]s have coordinates<ref name=NK/> <math display=block>\begin{array}{rrcrcr} J_A = & -a &:& b &:& c \\ J_B = & a &:& -b &:& c \\ J_C = & a &:& b &:& -c \end{array}</math> The [[nine-point center]] has coordinates<ref name=Scott/><ref name=NK/> <math display=block>\begin{array}{rccccc} & a\cos(\beta-\gamma) &:& b\cos(\gamma-\alpha) &:& c\cos(\alpha-\beta) \\[4pt] =& 1+\cot\beta\cot\gamma &:& 1+\cot\gamma\cot\alpha &:& 1+\cot\alpha\cot\beta \\[4pt] =& a^2(b^2+c^2) - (b^2-c^2)^2 &:& b^2(c^2+a^2) - (c^2-a^2)^2 &:& c^2(a^2+b^2) - (a^2-b^2)^2 \end{array}</math> The [[Gergonne Point|Gergonne point]] has coordinates <math>(s-b)(s-c):(s-c)(s-a):(s-a)(s-b)</math>. The [[Nagel point]] has coordinates <math>s-a:s-b:s-c</math>. The [[symmedian point]] has coordinates <math>a^2:b^2:c^2</math>.<ref name=":0" />
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)