Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Binomial distribution
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Agresti–Coull method ==== {{Main|Binomial proportion confidence interval#Agresti–Coull interval}} <ref name=Agresti1988>{{Citation |last1=Agresti |first1=Alan |last2=Coull |first2=Brent A. |date=May 1998 |title=Approximate is better than 'exact' for interval estimation of binomial proportions |url = http://www.stat.ufl.edu/~aa/articles/agresti_coull_1998.pdf |journal=The American Statistician |volume=52 |issue=2 |pages=119–126 |access-date=2015-01-05 |doi=10.2307/2685469 |jstor=2685469 }}</ref> : <math> \tilde{p} \pm z \sqrt{ \frac{ \tilde{p} ( 1 - \tilde{p} )}{ n + z^2 } }</math> Here the estimate of {{math|''p''}} is modified to : <math> \tilde{p}= \frac{ n_1 + \frac{1}{2} z^2}{ n + z^2 } </math> This method works well for {{math|''n'' > 10}} and {{math|''n''<sub>1</sub> ≠ 0, ''n''}}.<ref>{{cite web|last1=Gulotta|first1=Joseph|title=Agresti-Coull Interval Method|url=https://pellucid.atlassian.net/wiki/spaces/PEL/pages/25722894/Agresti-Coull+Interval+Method#:~:text=The%20Agresti%2DCoull%20Interval%20Method,%2C%20or%20per%20100%2C000%2C%20etc|website=pellucid.atlassian.net|access-date=18 May 2021}}</ref> See here for <math>n\leq 10</math>.<ref>{{cite web|title=Confidence intervals|url=https://www.itl.nist.gov/div898/handbook/prc/section2/prc241.htm|website=itl.nist.gov|access-date=18 May 2021}}</ref> For {{math|1=''n''<sub>1</sub> = 0, ''n''}} use the Wilson (score) method below.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)