Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Birthday problem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Generalization to multiple types of people==== [[File:2d birthday.png|thumb|Plot of the probability of at least one shared birthday between at least one man and one woman]] The basic problem considers all trials to be of one "type". The birthday problem has been generalized to consider an arbitrary number of types.<ref>[[Michael Christopher Wendl|M. C. Wendl]] (2003) ''[https://dx.doi.org/10.1016/S0167-7152(03)00168-8 Collision Probability Between Sets of Random Variables]'', Statistics and Probability Letters '''64'''(3), 249β254.</ref> In the simplest extension there are two types of people, say {{mvar|m}} men and {{mvar|n}} women, and the problem becomes characterizing the probability of a shared birthday between at least one man and one woman. (Shared birthdays between two men or two women do not count.) The probability of no shared birthdays here is :<math>p_0 =\frac{1}{d^{m+n}} \sum_{i=1}^m \sum_{j=1}^n S_2(m,i) S_2(n,j) \prod_{k=0}^{i+j-1} d - k</math> where {{math|''d'' {{=}} 365}} and {{math|''S''<sub>2</sub>}} are [[Stirling numbers of the second kind]]. Consequently, the desired probability is {{math|1 β ''p''<sub>0</sub>}}. This variation of the birthday problem is interesting because there is not a unique solution for the total number of people {{math|''m'' + ''n''}}. For example, the usual 50% probability value is realized for both a 32-member group of 16 men and 16 women and a 49-member group of 43 women and 6 men.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)